
p " i A/i H .
A M i f a. .iL ^

Computer

SOFTWARE RELEASE
DOCUMENT REV.18.2
MRU4304-005

MAN 3251-001

Software Release Document
MRU4304-005

Revision 0

This document details the enhancements and changes to Prime software
between Rev 18.1 and Rev 18.2

PRIME Computer, Inc.
500 Old Connecticut Path

Framinghamr Massachusetts 01701

ACKNOWLEDGEMENTS

We wish to thank the members of the documentation team and also the
non-team members who contributed to and reviewed this book.

Copyright © 1981 by
Prime Computer, Incorporated

500 Old Connecticut Path
Framingham, Massachusetts 01701

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer
Corporation. Prime Computer Corporation assumes no responsibility for
any errors that may appear in this document.

Software described in this document that is furnished under a license
may be used or copied only in accordance with the terms of such
license.

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.

PRIMENET and THE PROGRAMMER'S COMPANION are trademarks of Prime
Computer, Inc.

First Printing July 1981

All correspondence on suggested changes to this document should be
directed to:

Rosemary Simpson
Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, Massachusetts 01701

li

MRU5 CONTENTS

CONTENTS

1 INTRODUCTION

New Books 1-1

2 SYSTEM ADMINISTRATOR

The System Administrator's Guide - PDR3109 2-1

3 LANGUAGES

COBOL Reference Guide - FDR3056 3-1
FORTRAN 77 Reference Guide - IDR4029 3-1
PASCAL Reference Guide - IDR4303 3-4
PL/I Subset G Reference Guide - IDR4031 3-10

4 UTILITIES

Editor 4-1
ASSIGN 4-2
LOAD (Correction) 4-2
Phantom LOGOUT (Correction) 4-3
CRMPC (Correction) 4-3
Subroutines 4-4
Source Level Debugger Reference Manual - IDR4033 4-6

5 DATA MANAGEMENT SYSTEMS

General Data Base Information 5-1
The DBMS Administrator 's Guide - PDR3276 5-2
PTU73 - Rev 18 DBMS 5-3
DBMS FORTRAN Reference Guide - PDR3045 5-4
DBMS COBOL Reference Guide - PDR3045 5-4
DML Error Message Clar i f ica t ions 5-5
DBMS DML Syntax 5-6
MIDAS User ' s Guide - IDR4558 5-20
Prime/POWER Guide - PDR3709 5-24
MIDAS Changes for 18.2 5-27

6 FORMS

FORMS Programmer's Guide - PDR3040 6-1

7 PRIMENET

Changes to NETCFG 7-1

8 DPTX

Introduction 8-1
Correction to OWLDSC Command 8-1
Changes to DPTX/TCF 8-1
Changes to DPTX/TFS 8-3

iii July 1981

CONTENTS MRU5

Changes to Block Device Interface (BDI) Calls 8-3
DPTCPG: The DPTX Configuration Compiler 8-18
DPTCFG Source Files 8-21
DPTCFG Warning and Error Messages 8-25
Compatibility with Previous Revs 8-30
DPTX Startup 8-31
Warm Starting DPTX 8-32
Multiline Traffic Manager 8-32

July 1981 iv

MRU5 INTRODUCTION

SECTION 1

INTRODUCTION

NEW BOOKS

DBMS/QUERY Reference Guide (IDR 4607)

This book is a programmer's guide to DBMS/QUERY, which is the Data Base
Management System query language and report writer. The query language
lets a user retrieve information from a data base without having to
write application programs. The report writer lets you format the
retrieved information in very special ways. This manual describes
every user-level command. Also described are possible additions that
you might have to make to a subschema so that complex DBMS data
structures can be accessed by QUERY. As this book is a reference
guide, it assumes you already know how to use QUERY.

DBMS/QUERY User's Guide (IDR4608)

The DBMS/QUERY User's Guide is a tutorial explantion of the DBMS query
language a.id report writer. After reading this book, you will know how
to use all of the fundamental and most of the advanced QUERY commands.
The book contains many examples that illustrate how to retrieve
information and how this retrieved information can be displayed. This
book does not assume that the reader is a programmer.

FED User's Guide (IDR4940)

The Forms Editor, FED, is an interactive program for designing forms
that is usable by non-programmers. This book describes those areas of
forms management about which a forms designer may wish to confer with a
Systems Administrator and/or applications programmer; describes the
actual procedures for using FED; and provides a practical example in
designing a form and includes screen pictures that illustrate using
FED.

- 1 July 1981

MRU5 SYSTEM ADMINISTRATOR

SECTION 2

SYSTEM ADMINISTRATOR

THE SYSTEM ADMINISTRATOR'S GUIDE - PDR3109

General Note

Be sure to check the INFO UFD on the master disk for de ta i led
i n s t a l l a t i o n information.

Change to the Table of Shared Segments on Page 3-3

The tab le current ly reads:

2100-2177 Reserved for Prime

The t ab le should read:

2100-2167 Reserved for Prime
2170-2177 Reserved for customers

New Option -LOWEND

Add the following t o page 7-6:

A new option, -LOWEND, has been added t o COPY_DISK to provide fas ter
performance on models other than the 750 and 850. An example of a
COPY_DISK request using t h i s option would be :

COPYJDISK -NOVERIFY -LOWEND

Changes and Additions t o Printer Support

Add the following t o page 8-10:

SPOOL now uses the Electronic Vert ical Format Unit (EVFU) in the 300
lpn p r i n t e r / p l o t t e r t o define the form length. The forms-length switch
i s no longer necessary in t h i s device.

The EVFU i s enabled by issuing the PROP subcommand, "EVFU ON", when
creat ing or modifying a p r in te r environment. A subsequent command,
"PROP name - START" loads the EVFU in to the p r in te r as i t s t a r t s i t .
If the power to the p r in te r goes off, the EVFU must be reloaded by

2 - 1 July 1981

SECTION 2 MRU5

stopping and restarting the printer using PRIO.

SFOCL now supports the new "band" printer. This printer uses an EVFU
to determine the form length, so its environments must always have EVFU
turned on. The DEVICE parameter may be prO, prl, pr2, or pr3.

Since the format of the EVFU is different from the one in the 300 1pm
printer/plotter, these two devices must be distinguished. A new
environment parameter called TYPE has been defined for this purpose.
The band printer is TYPE 1 and the printer/plotter is TYPE 0.

850 Halt Handling

Add to Handling Halts Under PRIMPS on page 10-2:

Step 1; On the 850

As the 850 contains two instruction streams, it is first necessary to
determine which stream caused the halt. This is done via VCP on the
supervisor terminal by typing:

A 4/176106 <cr>

If the number displayed is '41004, stream #1 is halted and the correct
halt address is given in the "Halted at xxxxyyyy" message.

If the number displayed is '120010, stream #2 is halted and its
registers must be examined. This is done via VCP on the supervisor
terminal by typing:

A 4/176400 <cr>
A 7 <cr>

The correct halt address is given in the "Slave Halted at xxxxyyyy"
message.

F77 Optimization Defaults

Add to Defaults Set by Driver Programs on page 14-1:

Note

Any level of optimization may be set to be the site default by using
the distributed program F77DF in the UFD F77>TOOLS. These values are
stored in the driver file called E77DATA in the system UFD SYSOVL.
This file also stores the error messages returned when compilation
errors occur.

REV. 0 2 - 2

MRU5 SYSTEM ADMINISTRATOR

FAM I I ADDISK Command

Add the following t o page 16-2:

The ADDISK command for FAM I I systems i s d i f ferent from the ADDISK
command used on FAM I systems. The FAM I I command has the format:

ADdisk -ON nodename packnamel packname2....packname9

nodename The network node name for a va l id FAM I I system. The node
must be FAM I I enabled (see NETCFG).

packname-n The name of the remote p a r t i t i o n . FAM I I does not use
device numbers.

Unlike FAM I , FAM I I does not require t ha t the remote system i s up, or
tha t the remote disk i s s t a r t ed . The FAM I I ADDISK command adds the
disk and system name to the search l i s t displayed by the STAT DISK
command. The s t a tus of the disk i s checked whenever a user attempts t o
access the remote disk.

Caution on Use of LWORD

Add the following note t o Reverse Channel Protocol on Page 16-6:

The reverse channel protocol i s intended as an a l t e rna t i ve t o the
XCN/XOFF protocol . Since both protocols use the same s top b i t , i . e .
b i t 4 of the LWORD, they must not be used together in the same LWORD.

Increase in Number of AMLC Boards

Change page 16-7 to re f l ec t the following:

The number of AMLC boards tha t a s ingle configuration can support has
been changed from four t o e ight .

Changing the Size of the DMQ Buffer

Add the following note t o DMQ-Size Option of AMLBUF Command on page
17-3:

To change the s ize of the DMQ buffer on an assignable l i n e , use the
actual l i ne number.

July 1981

SECTION 2 MRU5

Configuration Directive AMLIBL

Add the following to page 17-4:

Configuration directive AMLIBL defines the size of the DMC input tumble
tables at cold start. AMLIBL explicitly sets the size of the input
buffers or automatically allocates the maximum size allowed by the
available buffer space. The syntax is:

AMLIBL buffer-size

buffer-size is an octal number which represents the number of words
allocated to each input buffer. There are two buffers for each AMLC
controller and all buffers are made the same size. Except for the
special value of zero described belowr the number must be greater than
'20. The upper bound is variable depending on the number of
controllers configured and the amount of space available in the system
for buffers. If buffer-size is zero or omitted, the size of the
buffers is automatically calculated as the maximum possible. If the
AMLIBL directive is not specified, the default buffer size is 60 octal.

If buffer-size is too small, the error message:

BAD AMLIBL PARAMETER (CINIT)

will ge generated during cold start initialization. If buffer-size is
too large, the error message:

INPUT BUFFERS TOO LARGE (AMINIT)

is generated at cold start initialization. The user should modify the
parameter to be a value within the permissible range as described
above.

Default Value Changes

In Filunt Direction on page 17-7 the default values should be 18('22),
127(,177), and 2048(,4000).

NAMLC Configuration Directive Change

On page 17-9, add to the NAMLC configuration directive:

NAMLC + NTUSR must be less than or equal to octal • 177.

Configuration Directive NSLUSR

Add the following to page 17-10:

Each user accessing files on your system from remote systems will
require a slave process for the duration of the access. These slave

REV. 0 2 - 4

MRU5 SYSTEM ADMINISTRATOR

processes come out of the PRIM3S 128 process pool. Configuration
directive NSLUSR defines slave processes. NSLUSR sets the number of
slaves configured for a system. The syntax is:

NSLUSR number

number is the number of simultaneous remote file accesses your system
wishes to support. If this pool is exhausted when a remote user makes
an attach request, the E$NSLA (no NPX slaves available) error code is
returned.

Note

NTUSR+NPUSR+NRUSR+NSLUSR must be less than 129.

Change to NTUSR configuration directive

Change page 17-11 to show that the number of terminal users specified
can now be a positive octal integer between 2 and 200 instead of 2 and
100.

Assignment of Paging Device Records

Add the following to page 20-6:

At Rev 18.2, paging device records are assigned in blocks of 8 pages at
a time, rather than in blocks of 64 pages (or one segnent).

Since user segments are often only 25% to 50 % full, a Rev. 18.2
system may be able to handle twice as many segnents as a Rev. 17 or
Rev. 18.1 system on the same amount of paging space. For this reason,
the formula given on page 20-5 for calculating the number of records
needed on the paging device (pagdev) now represents the maximum number
of records needed. A given system may function well with anywhere
between 50% to 100% of this number of records. Therefore, systems on
which disk space is tight may want to try reducing the number of
records being used for paging.

If the number of paging device records becomes too low, users
attempting to access a new page will receive the message "No free
paging device records".

Correction to PSD COPY Command

On page A-9, the PSD COPY command used to relocate PRIMDS II during a
magtape boot is incorrectly shown with a relocation value of '57541.
The correct value is '57477. The command given under point 17 should
read:

$C 10000 57477 130000

July 1981

SECTION 2 MRU5

MAGSAV Error Messages

Add the following t o page K-3:

MAGSAV has three new error messages:

MAGSAV UNABLE TO CONTINUE

MAGSAV cannot find a UFD in a pathname, MAGSAV p r i n t s the PRIMOS error
message plus t h i s message and e x i t s ,

BUN OUT OF UNITS
ALTER NUMBER OF UNITS
treename
TYPE ' S ' TO CONTINUE

MAGSAV ran out of un i t s t o open UFDs on. The f i l e concerned w i l l be
l o s t ,

'TOO MANY LEVELS' treename

MAGSAV can only save up t o 18 leve ls on PRIMOS, 13 on PRIMOS I I . If
more than these l eve l s are attempted, MAGSAV wi l l p r i n t t h i s message,
ignore tha t f i l e , return t o the previous l e v e l , save the f i l e s a t t ha t
level and continue back up the t r e e in tha t manner.

Note

A PRIMOS system configured for 16 file units/user can save only
13 levels.

REV. 0 2 -

MRU5 LANGUAGES

SECTION 3

LANGUAGES

COBOL REFERENCE GUIDE - FDR3056

Correction to UNCOMPRESSED Option

Replace the first paragraph on page 7-4 with:

1. The UNCOMPRESSED clause is optional. When used, it enables a READ
base on record length (PRWF$$), rather than compression control
characters (I$AD07).

(The reference to subroutines PRWFIL and RDASC is obsolete).

THE FOR3RAN 77 REFERENCE GUIDE - IDR4029

Performance Improvements

The overall compilation rate for F77 source programs with a
"reasonable" number of comments should exceed 1500 lines per minute in
most cases. We have observed compilation rates in excess of 2500 lines
per minute on some real benchmarks. Programs that consist mostly of
DATA statements will compile much slower than 1500 LPM figure,
particularly if large arrays are being initialized.

The most notable case of improved object code for F77 involves
references to arrays, where considerably shorter code is generated for
references such as

X(I+5,J-4)
Z(I+4)
Y(I,1)

Major improvements were made in the code generated for many string
operations, but these changes will probably not be important for mose
F77 programs.

The single precision math routines (SQRT, SIN, COS, etc.) were
rewritten for greater accuracy. In most cases, the new versions are
slightly faster than the old versions.

July 1981

SECTION 3 MRU5

Clarification of STOP Statement

On page 3-22, delete the sentence recommending CALL EXIT as a
substitute for STOP. CALL EXIT is not equivalent to STOP because STOP
closes all file units opened by the program, while CALL EXIT leaves
such file units open.

Clarification of Sequential and Direct File Access

In Section 4, files created using the sequential access method are
termed SAM files, and files created under the direct access method are
termed DAM files. This terminology is incorrect.

The terms "SAM" and "DAM" refer to the two basic file organization
PRIMOS uses to implement files. These organizations are not specific
to any one language. The terms "sequential access method" and "direct
access method" refer to the two types of file offered by the FORTRAN 77
language. Either type of FORTRAN file could be implemented using
either PRIMOS file organization. The implementation used is
transparent at the programming level, and is subject to change.

For detailed information on PRIMOS SAM and DAM files, see The PRIMOS
Subroutines Reference Guide - (PDR3621).

Internal Files

Replace the third paragraph on page 4-4 with the following:

When an internal file is an array, each array element acts as a
separate record. If the file is a variable, array element, or
substring, the file consists of a single record. After each read or
write of an internal file, the file pointer returns to the beginning of
the file. To access records other than the first in an array internal
file, use the slash (/) edit descriptor.

Optimization Options

In addition to the options listed in Table 7-2, there are three levels
of optimization: -0PT1, -0PT2, and -OPT3, where the default is
normally -0PT2. The old option -OPTIMIZE is retained and is synonymous
with -OPT2. The chosen level is noted in the option header line of the
compiler's listing output file. Optimization is turned off, as before,
by specifying -NOOPT.

The effect of specifying -OPT2 is elimination of the optimizer logic
that moves invarient code out of loops. This is a costly process that
was found to consume up to 15 par cent of total compile time on
programs with many nested DO loops. It is still available using -OPT3
and is useful in compiling fully debugged programs to be used in
frequent production situations. The default optimization (-0PT2)

REV. 0 3 - 2

MRU5 LANGUAGES

performs both code pattern replacement and redundancy elimination. The
lowest level (-0ET1) does only pattern replacement.

Correction Concerning Statement Functions

Delete the last paragraph on page 8-4 and its header. In F77r
statement functions and function subprograms execute with equal
efficiency.

FTN - F77 Interface Restriction

To the list of restrictions at the top of page A-3, add:

• An F77 program unit cannot pass a subprogram as an argument to an
FTN program unit, nor can an FTN unit pass a subprogram to an F77
unit.

July 1981

SECTION 3 MRU5

THE PASCAL REFERENCE GUIDE - IDR4303

New Appendix

APPENDIX D

INTERFACING PASCAL TO PLIG AND F77

This appendix provides three examples for interfacing Pascal to
incompatible data types of PLI and FORTRAN. The first two examples
deal with argument passing of character data types from Pascal to PLI
and F77. The last example describes the correct procedure for testing
FORTRAN LOGICAL's from Pascal, (i.e. APPLIB).

EXAMPLE ONE

{ <char-star.pascal> Passing character (*) and character* (*) parameters
to PLIG and F77 respectively from Pascal.

This example program passes any length string from a Pascal program
to either PLIG or F77. Note, the strings being received in the PLIG
and F77 programs have star extents for their dimensions. PLIG and
F77 pass these extents as hidden arguments at the end of the users'
argument list. Pascal users must pass these extents as actual
arguments since star extents are not supported in Primes' Pascal.
The following program does just that.

}
program chrNonVr;
type
longlnteger =
-32769 .. 32769;

string5 =
array[1 .. 5] of char;

stringlO =
array[1 .. 10] of char;

var
pl,p2 : string5;
pR : stringlO;

fl,f2 : string5;
fR : stringlO;

procedure PGconcat(var sl,s2,s3 : char; { First element of string }

REV. 0 - 4

MRD5 LANGUAGES

11,12,13 : longlnteger { Extents of the string }
) ; extern;

procedure F7concat(var sl,s2,s3
11,12,13

); extern;

begin
pi := '12345'; P2
fl
f2 •
fR

:= '6789.';
= pl;
:= P2;
:= PR;

: char;
: longlnteger

{ First element of string }
{ Extents of the string }

PGconcat(pl[l],p2[l], pR[l], 5, 5, 10);

F7concat(fl[l], f 2 [l] , fR[l], 5, 5, 10);

if (fR = pR) and
(fR= '123456789.')

then
writelnC PASS... strings (non-varying) in Pascal, PLIG, and F77')

else
writelnC FAIL... strings (non-varying) in Pascal, PLIG, and F77');

end.

/* <PGconcat.pllg> PLIG procedure to concatenate 2 strings to form
a third. Accepts as input 2 character nonvarying strings
a returns a nonvarying string as third argument */

PGconcat: procedure(si,s2,s3);

declare (si, s2, s3) character (*);

s3 = si I|s2; /* concatenate strings and return */
end PGconcat;

C <F7concat.f77> F77 procedure to concatenate 2 character*(*) strings
C to form a third. Accepts as input 2 character*(*) strings and returns
C a character*(*) string as the third argument.

subroutine F7concat(si,s2,s3)
character *(*) si,s2,s3

s3 = sl//s2 /* concat the strings */
return
end

July 1981

SECTION 3 MRU5

/ * <char-star.pllg> Using CHARACTER(*) parameters in pllg. */
/ * The following i s the equivalent EL1G program to perform the same

task as the Pascal program used before for passing star extent
character strings. */

main: procedure options(main);

declare (f1,f2, pirp2) character(5);
declare (fR, pR) character(10);

/* Note; only 3 arguments are required in PLi. The PL1G compiler
supplies the hidden arguments defining the dimensions of the
character strings passed.

V
declare (F7concat, PGconcat) entry(character(*),

character(*),
character(*)) external;

fl = '12345*;
f2 = '6789.';
pl = fl;
p2 = f2;

call PGconcat(pi,p2, pR);
call F7concat(fl,f2, fR);
if pR = fR

then
put skip l i s t (* Pass... string (non-varying) PL1G calling •);

else
put skip l i s t (' Fai l . . . string (non-varying) PLIG calling');

end main;

EXAMPLE TWO

{ <readtty.pascal> Reads text from the user terminal using the external
PRIMOS routine - cl$get

This program provides an example on how define a suitable Pascal
structure for implementing the character varying datatype found in PLI.
Since standard Pascal prohibits reading string data from files
without subscripts, this example will provide an alternate
solution for reading strings from the user terminal, without
explicit subscripting.

The simple object of the program is to read 3 strings from the terminal
and display them in complete reverse order.

}
program readlTY;
type

longlnteger =
-32769 .. 32769;

REV. 0 3 - 6

MRU5 LANGUAGES

char80varying =
record
1 : integer;
s : array[1 .. 80] of char;

end;

var
cmdline : char80varying;
table : array[1 .. 3] of char80varying;
irj : integer;
status : integer;

{ This procedure is documented in the PRIMOS SUBROUTINES REFERENCE GUIDE -
PDR3621, page 5-2. }

procedure cl$get(var cmdline : char80varying; { Command line input buffer }
lenBytes: integer; { Length of cmdline in bytes}

var status : integer); { Return error code status }
extern; { External PRIMOS procedure }

begin
{ Loop to input the text entered from the user terminal using the

PRIMDS routine defined above (cl$get).
}
for i := 1 to 3 do
begin

write(i:l,*> ') ;
cl$get(cmdline, 80, status);
i f status O 0

then
writeln('Bad status code returned, status =*,status);

table[i] := cmdline; { save the command line }
end;

{ Display the lines just typed in reverse order. }
writeln;

for i := 3 downto 1 do
begin

write(i:l , '< ') ;
for j := table[i] . l downto 1 do

write (table[i] . s [j]) ;
writeln;

end;

EXAMPLE THREE

{ <applib.pascal> Example of how to interface a Pascal program to the
standard APPL3B routines.

FORTRAN logical's ARE incompatible with Pascal boolean data types.

3 - 7 July 1981

SECTION 3 MRU5

Therefore, interfacing to the applications library from Pascal
can be a problem. The following "program" shows the easiest way to
to determine True and False when calling FORTRAN subroutines with
logical's.

Note: This program assumes that the type of logical returned is
a L0GICAL*2, and only occupies 2-bytes of memory. If the
FORTRAN subroutine called was compiled with default options
using F77, the type of result returned by the FORTRAN
subroutine would have to be a Long Integer.

}
program main;
const

type
longlnteger =
-32769 .. 32769;

string8 =
array[1 .. 8] of char;

stringl6 =
array[1 .. 16] of char;

var
msg : stringl6;
date: stringl6;
time: string8;

procedure date$a(var s : stringl6); extern;
procedure time$a(var s : string8); extern;

function ysno$a(var s : char; {Pass by ref, first loc of the msg }
1 : integer; {Pass by value, length of msg }
k : integer {Pass by value, default keys }

):integer; extern; {Returns fortran logical as integer }

begin
date$a(date); {Read today's date }
time$a(time); {get the current time}
writeln;
writeln('Today>s date: ',date);
writeln ('Time: ',time);
writeln;

msg := 'Yes | No ' ;
if ord(True) = ysno$a(msg[l] , 8 , a$ndef)

then
writeln ('Ok!')

else
writeln('Absolutely NO!•);

end.

REV. 0

MRU5 LANGUAGES

The PASCAL compiler supports the following option:

-UPCASE

-UPCASE maps lowercase characters into uppercase characters in identifiers.

3 - 9 July 1981

SECTION 3 MRU5

THE EL/I SUBSET G REFERENCE GUIDE - IDR4031

New Options

Add the following options to page 14-7:

-ERRTIY - List errors on the terminal
-NOERRTT? - Do not list errors on the terminal
-ERRLIST - Produce an errors-only listing file
-FRN - Round the floating accumulator before storing a

float bin (23)

Maximum Sizes Add the following information to the MAXIMUM SIZES list
on page 11-1 of The PL/I Subset G Reference Guide;

• The maximum number of % INCLUDE nesting level positions is 32.

• The maximum number of items in a structure is 1024.

Change in SKIP format

A value of 0 can now be given for n in the SKIP format. In the SKIP
format discussion on page 9-16, the third paragraph that begins "If n
is omitted," should now read:

"If n is omitted, a value of one is supplied. The value of n must
not be negative. If 0 is given the current line will be
overwritten."

REV. 0 3 - 1 0

MRU5 UTILITIES

SECTION 4

UTILITIES

EDITOR

The FNAME Command

Insert the following information after the discussion on the WHERE
command in Section 3 of The New User' s Guide to EDITOR and RUNOFF -
(FDR3104).

The FNAME command prints out the name of the file you are working on
daring an editing session. For example, if you are editing a file
called junk, the FNAME command will print the filename junk wherever
you issue the command in the file:

Print 2
The name of this file is called junk.
.sk2
fname
JUNK

If you ' re working on a new f i l e and haven ' t ye t specified a filename,
the FNAME command w i l l e l i c i t t h i s message:

F i l e name not specified

MODE NOSEMI and MODE SEMI

The following information af fec ts Section 9 of The New User ' s Guide to
Editor and Runoff - (FDR3104) and Section 4 of The Prime User ' s Guide -
(PDR4130).

NOSEMI mode eliminates the need t o use the CHANGE command t o inse r t
semicolons in a f i l e , using e i ther input mode or ed i t mode.

In input mode, MODE NOSEMI causes the EDITOR to t r e a t a semicolon as a
regular p r in t character instead of a l i ne terminator.

In ed i t mode MODE NOSEMI causes the APPEND, INSERT, and RETYPE commands
t o t r e a t semicolons as l i t e r a l s . For example:

OK, ed sheep
EDIT
mode nosemi
next
BA, BA BLACK SHEEP
append; HAVE YOU ANY WOOL
BA, BA BLACK SHEEP; HAVE YOU ANY WOOL

July 1981

SECTION 4 MRU5

The semicolon s t i l l terminates (or separates) EDITOR commands t ha t do
not i n s e r t new tex t i n to the f i l e . For example:

l
1 OK, ed sheep

EDIT
mode nosemi
t ; n
BA, BA BLACK SHEEP

MODE SEMI causes the EDITOR to recognize the semicolon as the l i ne
terminator when in input mode. The default semicolon mode i s MODE
SEMI.

ASSIGN

Add the following to page 2-6 of The Prime User's Guide:

Mounting Tapes: When you assign a tape drive, you may also specify a
particular tape to be placed on the drive by using the -TPID control
argument. Sometimes it is necessary to have one tape removed from the
tape drive and another tape placed or mounted on the tape drive. This
is done by using the -MOUNT control argument. To specify -MOUNT, the
tape drive must already be assigned. For example, suppose ADLEY, user
number six, assigns logical drive seven:

OK, ASSIGN MTO -ALIAS MT7 -800 BPI -TPID GRADES
OK,

Now, suppose ADLEY reads or writes the tape with id GRADES, and then
wants another tape mounted. ADLEY types:

OK, ASSIGN -ALIAS MT7 -MOUNT -TPID EXAMS
OK,

The operator receives a message at the system terminal indicating that
user ADLEY wants tape EXAMS mounted. The operator responds to ADLEY's
request by using the REPLY command. ADLEY then receives a message
indicating whether or not the mount operation was successful. The
mount operation might be unsuccessful, for example, if the operator
could not find the requested tape.

LOAD (CORRECTION)

Delete the phrase " (to which LOAD wi l l add the SAVE suff ix)" from page
6-8 of The Prime User 's Guide.

LOAD appends the .SAVE suffix only to default filenames which i t
creates i t s e l f . I t does not append the .SAVE suffix t o user specified
filenames.

REV. 0 4 -

MRD5 UTILITIES

PHANTOM LOGOUT (CORRECTION)

Delete the information on phantom logout notification and its
associated subroutines, LO$CN and LO$R on page 9-11 of The Prime User's <
Guide and on pages 78-6 through 78-10 of PTU78 - Subroutines. This]
functionality is not provided at Rev 18.

CRMPC (CORRECTION)

Replace the section on page 12-2 of The Prime User's Guide beginning
"Source deck header control cards..." and ending "...by the command
START at the terminal." with the following:

I
The CRMPC command translates the card images into an ASCII file. Cards
are expected on 029 representation. Control cards may be inserted into
the card deck to instruct the card reader as follows:

Columns 1 and 2 of Instruction
deck control card

$6 Placed before a deck of cards in 026
format. Instructs the card reader to
interpret 026 cards as if they were in
029 format.

$9 Instructs the card reader to resume
reading in 029 format.

$E Placed last in the deck and signals the
end of the deck. Control returns to
PRIMOS and the file is closed.

If the card deck is exhausted but contains no $E card at the end (or if
the reader is halted by the user), control returns to PRIMDS but the
file is not closed. If more cards are to be read into the file, the
reader should be reloaded; reading is resumed by the command START at
the terminal.

July 1981

SECTION 4 MRU5

SUBROUTINES

Change the type declaraction of LOGICAL on page 11-48 of The PRIMPS
Subroutines Reference Guide (PDR3621) to read L0GICAL*2.

This change makes A$KEYS, the $INSERT f i l e used with APPLIB and VAPPLB
to define parameter keys, compatible with F77.

Formerly, A$KEYS declared i t s logical variables as LOGICAL. This
created an incompatibili ty with F77 because LOGICAL defaults t o
L0GICAL*4 in F77, while APPLIB and VAPPLB expect LOGICAL*2 arguments.

The logical var iables in A$KEYS are now exp l i c i t l y declared as
L0GICAL*2, eliminating the incompatibility with F77.

Replace T$AMLC description on page 20-16:

ASYNCHRONOUS CONTROLLERS

The following describes the raw data mover for assigned AMLC lines.
Refer to the System Administrator's Guide for the AMLC command, and how
to assign AMLC lines.

T$AMLC

T$AMLC is a direct entrance call. It performs raw data movement,
provides status information about assigned amlc lines, and transfers
characters to and from the caller's buffer to a desired assigned line's
buffer. The caller must own the desired line, i.e., the corresponding
LBT entry must contain the caller's user number.

CALL T$AMLC (line, user_buf_addr, char_count, key,
stat_vec,char_jpos_arg, errcode)

line Desired amlc line number.

user_buf_addr Address (pointer) to the caller's buffer.

char_count Desired number of characters to move. No maximum limit
is enforced.

key

1 input char_count characters.

2 input char_count characters or until .NL.
stat_vec(l) = actual number of characters read.

REV. 0

MRU5 UTILITIES

3 output char_count characters.
Maximum = char_count. This key assures the ca l l e r
t ha t char_count characters w i l l be output. For ,
example, an error i s not returned i f the l i n e ' s input i
or output buffer i s smaller than char_count. T$AMLC '
w i l l output blocks of data from the c a l l e r ' s buffer
i n to the avai lable room in the l i n e ' s output buffer
un t i l char_count i s exhausted. A one second wait i s
issued between output chunks to allow time for the
l i n e ' s output buffer t o c lea r . In most cases, the
en t i r e char_count should be output a t once.

4 s tat_vec(l) = number of characters in input buffer. J
stat_vec(2) = s t a t e of c a r r i e r .

5 return s ta tus of output buffer.
s tat_vec(l) = 1 if room for char_count in output
buffer.
stat_vec(l) = 0 if not enough room for char_count. ,
stat_vec(2) = state of carrier.

6 input a l l avai lable characters in the input buffer.
Maximum = char_count. This key wi l l place a l l the
avai lable characters in the l i n e ' s input buffer in to
the c a l l e r ' s buffer.
s tat_vec(l) = number of characters ac tua l ly input.

7 return addit ional output buffer s t a tus (refer t o key
5) .
s ta t_vec(l) = amount of character space remaining in
the

output buffer.

8 flush input buffer.

9 flush output buffer.

10 flush both output and input buffers .

11 output characters t o avai lable room in output.
This key wi l l output as many characters as possible
in to the l i n e ' s output buffer. Awai t w i l l not be
done t o exhaust char_count.
s ta t_vec(l) = number of chars t ha t were not
successfully output, i . e . s ta t_vec(l) = 0: means a l l
characters were output.

s tat_vec Two word s t a tus vector used by cer ta in keys.

char_pos_arg The ca l l e r may wish to indicate a s t a r t i n g posi t ion
within the buffer addressed by user_buf_addr.
Char_pos_arg applies for both input and output keys.
This i s an optional argument. If omitted, the default i s
to s t a r t with the f i r s t character . Note: i f

4 - 5 July 1981

SECTION 4 MRU5

char_pos_arg is used, the first character position should
be indicated by one (there is no character at position
zero). Also, char_pos_arg is NOT updated within T$AMLC.

errcode Optional argument to return error status. If errcode is
present, error messages will not be printed at the
caller's physical terminal.

SOURCE LEVEL DEBUGGER REFERENCE MANUAL - IDR4033

PASCAL Additions

Change page 1-3 language support description to include PASCAL.

Add to page 3-7:

PASCAL: A PASCAL program block is a main program, procedure, or
function, and is identified by the name given in the
PROGRAM, PROCEDURE, or FUNCTION statement. Nested
procedures are qualified as they are in PL/1.

Change page 3-11 statement label description to include PASCAL -
statement-label may be a PASCAL statement number preceded by a dollar
sign.

Change page 5-3 : command description to include PASCAL as a valid
language-name value.

Replace builtin function list on page 4-13 by the following listing
which includes PASCAL functions.

REV. 0 4 - 6

MRUS UTILITIES

ABS
ACQS
ADD
ADDR
ADDREL
AFTER
AIMAG
AINT
ALOG
ALOG10
AMAXO
AMAX1
AMINO
AMIN1
AMOD
AND
AN INT
AS IN
ATAN
ATAN2
ATAND
ATANH
BEFORE
BIN
BINARY
BIT
BOCL
BYTE
CABS
COOS
CEXP
CHR
CLOG
CMPLX
CMPX
COLLATE

COMPLEX
OONJG
COPY
COS
COSD
COSH
CSIN
CSQRT
DABS
DATAN
DATAN2
DATE
DBLE
DOOS
DDIM
DEC
DECAT
DECIMAL
DEXP
DIM
DIMENSION
DINT
DIVIDE
DLOG
DLOG10
EMAXL
EMIN1
EMOD
DNDJT
DPROD
DSIGN
DSIN
DSQRT
EXP
FIXED
FLOAT

HBOUND
HIGH
IABS
IDIM
IDINT
IDNINT
IFIX
IMAG
INDEX
INT
INTL
INTS
IRND
ISIGN
IBCUND
LEN
LENGTH
LGE
LGT
LLE
LLT
LOC
LOG
LOG10
LOG2
LOW
LS
LT
MAX
MAXO
MAX1
MIN
MINO
MINI
MOD
MULTIPLY

NINT
NOT
NULL
ODD
OFFSET
ONCODE
OR
CRD
POINTER
PRED
PTR
RANK
REAL
REVERSE
RND
RS
RT
SEARCH
SHFT
SIGN
SIN
SIND
SINH
SNGL
SQRT
SUBSTR
SUBTRACT
SUCC
TAN
TAND
TANH
TIME
TRANSLATE
VERIFY
XOR

Change page 5-17 LANGUAGE command description to include PASCAL.

UNLATCH Command Changes

On page 5-38 add the option -ALL to the UNWATCH command list. If
UNWATCH -ALL is specified, all variables are removed from the watch
list.

- 7 July 1981

SECTION 4 MRU5

VTRACE Command Changes

On page 5-39 replace the command l ine and f i r s t paragraph of the VTRACE
j command with the following:

The VTRACE command allows the user to enable f u l l or en t ry /ex i t value
t rac ing, or to disable value tracing a t any time, while re ta in ing the
var iables in the watch l i s t .

' The format of the command (abbreviated VT) i s :

i VTRACE { FULL | ENTRY_EXIT | OFF }

> The OFF argument disables value t racing without dis turbing the contents
of the watch l i s t . The FULL and ENTRY_EXIT arguments control the
frequency of comparisons of saved values to current values . If " fu l l "
value t racing i s enabled, comparisons occur following execution of each
statement. If "entry_exitM t racing i s enabled, values are compared
only a t entry to and ex i t from each routine in debug mode.

HELP Command Changes

On page 68-3 of PTU68 - EBG - replace the descr ipt ion of HELP with the
following:

The HELP command may be used t o find the name of the most recent and
up-to-date DBG documentation. I t may also be used t o display a l i s t of

1 a l l debugger commands, the syntax of any EBG command, a l i s t of a l l
i syntax symbols used in EBG command syntax descr ip t ions , or the

def ini t ion of a command syntax symbol.

The format of the HELP command i s :

HELP [-LIST | -SYM_LIST | command-name | syntax-symbol]

Where:

command-name i s the name or abbreviation of a EBG command.

syntax-symbol i s a symbol enclosed in angle brackets used in a
command syntax descript ion, for example, , ,<breakpoint-identif ier>n .

If the HELP command i s issued with no arguments, the syntax of the HELP
command and the name of the most recent EBG documentation are pr in ted.

REV. 0 4 -

MRU5 UTILITIES

> HELP
For h e l p , r e f e r t o IDR4033 Source Level Debugger Reference Manual,

HELP -LIST
HELP -SYM_LIST
HELP <command-name>
HELP <syntax-symbol>

p r i n t s a l i s t of a l l DBG commands
p r i n t s a l i s t of a l l syn tax symbols
p r i n t s t h e syn tax of <command-name>
p r i n t s t h e d e f i n i t i o n of <syntax symbol>

I f -LIST i s s p e c i f i e d , a l i s t of DBG commands i s p r i n t e d ,
a b b r e v i a t i o n s a r e i n d i c a t e d by c a p i t a l l e t t e r s .

Command

> HELP -LIST
i
i

ActionList
CALL
CmdLine
EnvList
HELP
INFO
LIST
MACro
OUT
PSYMbol
Resubmit
SouRCe
Stepln
TraceBack
UnWatch
VTrace
WHere

*

ARGumentS
CLeaR
Continue
ETrace
IF
LANGuage
LiSTAll
MacroList
PAuse
Quit
SaveState
STATUS
STrace
TRAcepoint
UNWIND
WAtch

•
BReaKpoint
CLeaRAll
ENVironment
GOTO
IN
LET
LoadState
MAIN
PMode
ReSTart
SEGmentS
Step
SYMbol
TYPE
vPSD
WatchList

If the HELP command is followed by -SYM_LIST, a list of all DBG
symbols used in DBG command syntax descriptions is printed.

syntax

> HELP -SYMJLI5T
ACTION-LIST
ALTERNATE-ENTRY-ID
BOUND-PAIR
CHARACTER-VALUE
EXPRESSION
LANGUAGE-NAME
MACRO-NAME
PRIMDS-COMMAND-LINE
PROGRAM-BLOCK-NAME
SOURCE-LINE
STATEMENT-OFFSET
SYNTAX-SYMBOL
VARIABLE
WORD-NUMBER

ACTIVATION-NUMBER
ARGUMENT
BREAKPOINT-IDENTIFIER
COMMAND-LIST
FILE-NAME
LINE-OFFSET
NEW-MACRO-NAME
PRINT-MODE
SEGMENT-NUMBER
STATEMENT-IDENTIFIER
STEP-COMMAND
UPPER-BOUND
VARIABLE-LIST

ALTERNATE-ENTRY-NAME
ARGUMENT-LIST
BREAKPOINT-TYPE
COMMAND-NAME
INSERT-LINE
LOWER-BOUND
OLD-MACRO-NAME
PROCEDURE-NAME
SOURCE-COMMAND
STATEMENT-LABEL
SYMBOL-NAME
VALUE
VARIABLE-NAME

J u l y 1981

SECTION 4 MRU5

If HELP i s followed by a <command-name>, the syntax of that command i s
displayed.

\ > HELP INFO
INFO {<program-block-name> \ I

<alternate-entry-id> I
• <statement-identifier^
>

If a <syntax-symbol> follows HELP, the definition of that symbol i s
printed.

> HELP <STATEMENT-IDENTIFIER>
<STATEMENT-IDENTIFIERS

! <source-line> |
f <source-line>-Kstatement-offset> |
• <source-line> (<insert-line>) I
' <source-line> (<insert-line>-Kstatement-offset>) I

<statement-label> I
<statement-label>-Kline-offset> |

1 <statement-label>+<line-offset>-Kstatement-offset>

MACRO Command Changes

On page 68-5 of PTU68 - EBG - replace the description of MACRO with
, the following:

Using the MACRO command, the user can define a macro name which may
• be used in place of one or more debugger commands.
1 The format of the command (abbreviated MAC) is:
I

MACRO macro-name {command-list I -DELETE | -EDIT} |
-CHANGE_NAME old-macro-name new-macro-name |
-ON | -OFF

Where:

macro-name and new-macro-name are user-supplied names.

command-list i s one or more debugger commands enclosed in square
brackets ("[]").

old-macro-name i s the name of an existing user macro.

A macro i s defined with the MACRO command by entering a macro-name
followed by a command-list. The macro i s then entered into a
debugger table known as the "macro l i s t " . Thereafter, whenever
macro-name is entered at DBG command level, the debugger commands in
command-list wil l be executed, with supplied parameters, if any.

A macro-name i s removed from the macro l i s t by supplying the argument

REV. 0 4 - 1 0

MRU5 UTILITIES

-DELETE.

The -EDIT argument indicates t ha t the command-list associated with »
t h i s macro-name i s t o be edited using the EBG command l i ne ed i t 1
f a c i l i t y .

The -CHANGE_NAME argument may be used t o change the name of a user
macro from old-macro-name to new-macro-name.

The MACRO -OFF command inh ib i t s expansion of user macros without
disturbing the macro l i s t .

The MACRO -ON command reenables expansion of user macros.

SAVESTATE Command Changes

On page 68-5 of PTU68 - DBG - replace the descr ipt ion of SAVESTATE
with the following:

The SAVESTATE command may be used t o save ce r t a in debugging
information for res to ra t ion a t a subsequent invocation of DBG.

The format of the SAVESTATE command (abbreviated SS) i s :

SAVESTATE file-name [-MACROS] [-BREAKPOINTS] [-TRACEPOINTS]

Where:

file-name i s a t r e e name describing a f i l e .

When t h i s command i s issued with no control arguments, the following
are saved: a l l t racepoints and breakpoints with associated act ion
l i s t s and a t t r i b u t e s , and a l l user-defined macros. DBG commands to
res to re t h i s information are wri t ten t o file-name in user-readable
form.

If any of the arguments -MACROS, -BREAKPOINTS, or -TRACEPOINTS are
specified, then only those items requested w i l l be saved.

- 11 July 1981

MRU5 DATA MANAGEMENT SYSTEMS

SECTION 5

DATA MANAGEMENT SYSTEMS <
i

GENERAL EATA BASE INFORMATION

General Note to EBMS Users

The way in which EBMS alters set currencies for optional member record
occurrences now conforms with CODASYL specification. If a record is
defined as optional manual, mandatory manual, or optional automatic, |
and does not participate in any set occurrence of the set, set currency ,
will not be affected by that record. Previously, when a record became
current, all set currencies that the record occurrence could belong to
were updated. This was done whether or not the record actually
participated as a member of the set.

With revision 17.6 the only currencies updated are those in which the
record occurrence actually participates. I

Application programs conforming to present documentation are not
affected. However, if a record does not currently participate as a !
member in a set (set X), a FIND OWNER in X of current of set X, will
result in a "stale" owner record — the owner of the most recently i
found member record that does participate as a member in set X.

Converting Pre-Rev. 18 Data Bases

Since the size of the before-image header has been increased, pre-Rev.
18 schemas will NOT work correctly unless the following actions are
taken:

1. BEFORE installing Rev. 18, run before-image recovery on all
schemas and do SAVEs for each schema.

2. Install Rev. 18 DBMS.

3. In D3UTL, make the schema the current one (e.g., SC MYSCHEMA)
and then type the D3UTL REV18 command.

4. Rev. 18 will then do this one-time per schema conversion.

Any SAVEs of pre-18 schemas will not work correctly on a Rev. 18
system. Consequently, if you restore a pre-Rev. 18 save, invoke D3UTL
and type the REV18 command to convert the restored data base. It is
recommended that you do a new save of the schema so that you have a
replacement for the pre-18 schema.

5 - 1 July 1981

SECTION 5 MRU5

If you are not sure if a schama has been converted to Rev. 18 format,
• invoke EBUTL, DUMP BEFORE and examine GENBIT. If GENBIT is 8 words
! long, the schema has been converted; if it is 4 words long, it has

not.
»

[If you attempt t o run a pre-18 schema, you w i l l get the message:

THIS SCHEMA NEEDS DBUTL REV18 CONVERSION
CONTACT DBA FOR INSTRUCTIONS

WARNING

There is no mechanism for preventing inappropriate conversion
(i.e., conversion of schemas either created with an 18 or
higher version of DBMS or schemas that have already been
converted). The DBA must exercise caution in this area.

THE DBMS ADMINISTRATOR'S GUIDE - PDR3276

DBACP RECOVER SCHEMA Command
» " ~ ™ ~ ~ ' — — — — — — — — — — — —

I If you type the DBACP RECOVER SCHEMA command and run-uni ts are
• accessing the data base, DBACP asks the quest ion:

i
DO YOU WISH TO ABORT THE PUN-UNITS?

. If you answer YES, DBACP waits for you to abort a l l run-units accessing
' the data base. This i s done by logging these run-uni ts out from

another terminal . After you log these run-units out , run CLUP so tha t
the data base i s in a correct s t a t e . When you run CLUP, do not forget
t o use the :

CLUP -U user-number

form of the CLUP command.

Note

Do not CLUP a run-unit while i t i s running or a loss of data
in tegr i ty wi l l r e su l t .

After DBACP determines tha t no one i s accessing the data base, i t
performs the RECOVER operation.

If you type NO, DBACP asks:

DO YOU WISH TO WATT FOR THE RUN-UNITS TO FINISH?

If you answer YES, DBACP wi l l wait un t i l i t determines t h a t no one i s
accessing the data base. I t then performs the recovery operation.

REV. 0 5 - 2

MRU5 DATA MANAGEMENT SYSTEMS

If you again type NO, DBACP returns to its command level.

SCHED I

When adding new f i l e s (e .g . , areas, s e t s , etc) or modifying ex is t ing <
f i l e s , SCHED now creates DAM rather than SAM f i l e s . The following |
procedure iden t i f i e s and correc ts exis t ing data bases: ,

1. Attach to a l l PDBMS UFD's tha t contain production data bases. \

2 . Use the f i l e u t i l i t y (FUTIL) to find i f any DBMS f i l e s are SAM
f i l e s fcy f i r s t using FRCM SDnnnn, where nnnn i s the SCHEMA

number, zero f i l l e d . Then use L T. '

3 . If there are any SAM data base f i l e s :

- Use D3ACP t o SAVE t h e da t a b a s e . I

- Use DBACP t o RESTORE the data base.

All segment di rectory en t r i e s for the data base w i l l now be DAM f i l e s .

PTU73 - REV 18 DBMS

DBUTL
I

Two commands, VERIFY and DBK, have been added. ^

VERIFY: For each b-tree in the current set, VERIFY establishes that
every leaf node data base key is in the data base. The format of this
command is:

VERIFY [integer]

If the optional integer argument is used, a checkpoint message will be
displayed after the specified number of owner directories (i.e., set
occurrences) have been processed. This numerical argument is a decimal
number.

The messages that can be printed are:

1 COULD NOT POSITION TO ROOT OF B-TREE

2 COULD NOT POSITION TO LEFT-MOST LEAF NODE

3 INFINITE LOOP IN LEAF NODE 'RIGHT' POINTERS

4 COULD NOT POSITION TO THE NEXT (RIGHT) LEAF NODE

- 3 J u l y 1981

SECTION 5 MRU5

6 DBK NOT IN DATABASE

7 DBK MARKED AS DELETED IN DATABASE

This command also serves as a compliment to the new DMLCP command which
is described below.

DBK; The format of this DBUTL command is:

{ nl n2 n3 }
DBK { }

{ dbk }

If you speify a data base key (dbk) in its logical format (which is
area-id, record-id, occurrence-number), DBUTL displays the internal 48
bit representation of the dbk as three decimal numbers. If you type
the internal representation of the dbk (the three decimal number
option), DBUTIL displays the dbk in its logical (unpacked) format.
This comand is used to determine the logical format of a dbk given the
packed format displayed in DMLCP traces (e.g., FTRACE).

DBMS FORTRAN REFERENCE GUIDE - PDR3045 AND DBMS COBCL REFERENCE GUIDE -
PDR3046

DMLCP

The command line option -VERIFY has been added to DMLCP. This option
lets an application program check record integrity in data base areas
as well as check the consistency of CALC and set files.

When using this option, the application program should contain a series
of FIND (or FETCH) NEXT RECORD OF AREA statements to check each key of
interest. DMLCP locates the record using all keys (i.e., CALC, sort,
and search keys) defined for the record type and verifies that the
record is contained in the non-sorted set occurrences for which it is
currently a member. In addition, for each set occurrence that the
record owns, DMLCP checks that the record's dbk is contained in the set
file.

The one inconsistency that DMLCP -VERIFY does not detect is the case in
which a dbk is contained in a set list, but it is either not contained
in the area file specified by the dbk or is marked as deleted in the
area file. For this case, use when the DBUTL VERIFY command to detect
inconsistencies of this type. (The DMLCP and DBUTL verifies are
complimentary and do not overlap in functionality.)

REV. 0 5 -

MRU5 DATA MANAGEMENT SYSTEMS

When an inconsistency is detected, EMLCP writes a binary description of
the error to a file opened on unit 45. Consequently, a file must be
opened on this unit number before the run-unit is invoked. For
example:

OPEN BUG.FILE 45 3
SEG #PROGRAM -VERIFY
CLOSE 45

The program EBMSLB>VFYFRT. SAVE displays the contents of BUG.FILE in a
formatted fashion. VFYPRT will print a menu of options that can be
used to display or analyze the bug file. For example, VFYPRT can be
used to print the definition of a particular bug number discovered via
the -VERIFY.

Creation of a EML Application Program

Once a schema has been written and compiled and a subschema has been
written and compiled, and the data base files have been allocated with
EBACP, the user can write application programs for the data base in
either COBOL or FORTRAN. The sequence used to transform the' source
code into executable code is as follows:

1. Preprocess the source code with the host language preprocessor
(CEML GR FEML) .

2. Compile the output of the preprocessor (D_xxxxx) with the host
language compiler (COBGL or FTN).

3. Link the binary output of the compiler to the EML command
processor with the segmented loader SEG.

Sample job streams to do these operations with either a COBOL or FTN
program may be found in UFD EBMSLB called C_CEML, CjCLQAD, C_FDML, and
C_FLQAD. These template jobs are used in conjunction with EXEC.

DML ERROR MESSAGE CLARIFICATIONS

The following two minor exception codes have been added.

39 Implicit access of a set not included in the subschema

50 Retrieving next of set for set wherein current member removed

July 1981

SECTION 5 MRU5

DML SYNTAX

In some cases, there has been some ambiguity concerning COBOL and
FORTRAN DML syntax. The following pages describe all syntax.

The EML command descriptions use the following conventions:

UPPERCASE Represent keywords that you must type as shown.

UPPERCASE Represent words that increase readability. You may
include or omit these words at your discretion.

lowercase Represent variables for which you must supply a value.

{ } Enclose a group of options from which you must choose
only one.

[] Enclose optional choices; you can include the item or
items in brackets, or you can omit it, as you choose.

II Enclose a group of options from which you can choose
as many as you like; however, ycu must choose at
least one. In all cases, when you select more than
one, options may be separated by commas if you so
choose.

Indicates that repetition is allowed. The portion of
the format that can be repeated is delimited by the [
or { that logically matches the] or } to the
immediate left of the ...

For example, -list Means you can repeat the last entity,
the generic term "item-list" means:

item-1 [,item-2] ...

"-list" is only used with lowercase variables (that
is, ones for which you supply a value). In all cases,
a list could consist of only one entity.

In many cases, the singulars and plurals of keywords are parsed
identically; that is, if ycu see a plural, you can type the singular
or vice versa. In particular, AREA and AREAS, RECORD and RECORDS, SET
and SETS, and ERROR and ERRORS have identical meaning. In most cases,
only one form is indicated.

REV. 0 5 -

MRU5 DATA MANAGEMENT SYSTEMS

COBOL S y n t a x

ABORT TRANSACTION

ABORT TRANSACTION i d e n t i f i e r .

CLEAR ERROR

CLEAR ERROR .

CLEAR SUPPRESS

CLEAR SUPPRESS
ALL
TTREg

ARE
SETS

RECORD
AREA
SETS s e t - l i s t

CLOSE AREAS

CLOSE
ALL AREA[S]

AREAS a r e a - l i s t

DELETE

DELETE
MANDATORY
SELECTIVE
ALL

END TRANSACTION

END TRANSACTION i d e n t i f i e r .

EXIT DBMS

EXIT
DBMS

ABORT

- 7 July 1981

SECTION 5 MRU5

FIND/FETCH

Format 1

FETCH

FIND
• USING db-key .

Format 2

(FETCH)
| FIND J

OWNER

MEMBER
IN se t -1 OF { RECORD record

SET se t -2
AREA area
RUN-UNIT

Format 3

I FETCH!
1FIND

NEXT \
PRIOR I
FIRST \
LAST i
integer I
iden t i f i e r /

RECORD [record] OF
SET se t

AREA area

Format 4

-

FETCH]

FIND

Format 5

FETCH'

FIND
V /

Format 6

<
FETCH]

FIND

[NEXT DUPLICATE WITHIN] RECORD record .

record VIA [CURRENT OF] SET se t [USING i t em- l i s t]

. NEXT DUPLICATE WITHIN SET se t USING i t em- l i s t .

REV. 0 5 - 8

MRU5 DATA MANAGEMENT SYSTEMS

GET

GET [i t em- l i s t] .

IF

Format 1

IF set SET [NOT] EMPTY .
cobol-procedure-1'

NEXT

[[;] ELSE oobol-procedure-2] .

Format 2

MEMBER
IF RECORD [NOT]

OWNER
\ OF

set SET

ANY SET

[[;] ELSE cobol-procedure-2] .

cobol-procedure-1

NEXT

INSERT

INSERT INTO •
SETS s e t - l i s t

ALL SET[S]

INVOKE DBMS

INVOKE DBMS .

MODIFY

MODIFY [i t e m - l i s t] .

MOVE

Format 1

MOVE CURRENCY STATUS FOR
fRUN-UNIT

RECORD record
AREA a rea
SET s e t

TO iden t i f i e r

July 1981

SECTION 5 MRU5

Format 2

MOVE
'RECORD-NAME)

AREA-NAME

f RUN-UNIT
RECORD record

FOR < AREA area TO identifier-2 .
SET set

kidentifier-1

ON ERROR

Format 1

[;] ON ALL ERRORS GO TO oobol-procedure .

Format 2

[;] { CN ERROR integer-list GO TO cobol-procedure-1 } ...

[ON OTHER ERRORS GO TO cobol-procedure-2] .

OPEN AREAS

Format 1

OPEN ALL AREAS

USAGE [-] MODE IS
EXCLUSIVE

PROTECTED

Format 2

OPEN AREAS a r e a - l i s t - 1

USAGE[-] MODE IS
EXCLUSIVE

PROTECTED

RETRIEVAL

UPDATE

[RETRIEVAL

1 UPDi UPDATE

; AREAS a r e a - l i s t - 2

USAGE[-]MODE IS
EXCLUSIVE

PROTECTED

RETRIEVAL

UPDATE

REV. 0 5 - 1 0

MRU5 DATA MANAGEMENT SYSTEMS

PRIVACY KEY

Format 1

PRIVACY KEY FOR
EXCLUSIVE

PROTECTED

RETRIEVAL

UPDATE

AREAS a r e a - l i s t
OF

ALL AREAS
IS

identifer\

literal I

Format 2

PRIVACY KEY FOR

REST
STORE
GET
MODIFY
INSERT
REMOVE
DELETE MANDATORY
DELETE SELECTIVE
DELETE ALL
FIND

OF
RECORDS r e c o r d - l i s t

ALL RECORDS
IS

identifer

l i t e r a l

Format 3

PRIVACY KEY FOR
REST

STORE
GET
MODIFY

OF DATA-ITEMS item-list IS
literal

identifier

- 11 July 1981

SECTION 5 MRUS

Format 4

PRIVACY KEY FOR

SETS set-list'

ALL SETS
. IS

identifer

literal

REMOVE

REMOVE FROM •
SETS set-list'

ALL SETS

START TRANSACTION

START TRANSACTION identifier
r UPDATE

, RETRIEVAL

STORE RECORD

STORE record .

SUBSCHEMA

SUBSCHEMA subschema OF SCHEMA schema .

SUPPRESS

SUPPRESS
ALL

IP
RECORD
AREAS
SETS s e t - l i s t

REV. 0 5 - 1 2

MRU5 DATA MANAGEMENT SYSTEMS

FORTRAN EML Syntax

ABORT TRANSACTION

ABORT TRANSACTION identifier

CLEAR ERROR

CLEAR ERROR .

CLEAR SUPPRESS

CLEAR
ALL

SUPPRESS j TTRECORD
AREAS
SETS s e t - l i s t

CLOSE AREAS

CLOSE •
ALL AREA[S]

AREAS a r e a - l i s t

EBMS SUBPROGRAM

DBMS SUBPROGRAM .

DELETE

DELETE
MANDATORY
SELECTIVE
ALL

END TRANSACTION

END TRANSACTION i d e n t i f i e r .

5 - 13 July 1981

SECTION 5 MRU5

EXIT DBMS

'EXIT

ABORT
DBMS .

FIND/FETCH

Format 1

FETCH]

FIND (
USING db-key .

Format 2

/FETCH
[FIND

' OWNER \

MEMBER J
IN s e t - 1 OF CURRENT OF

RECORD r e c o r d s
SET s e t - 2
AREA a r e a
RUN-UNIT

Format 3

(FETCH
FIND

NEXT
PRIOR
FIRST
LAST
Integer
ident i f ie r

RECORD [record] OF
SET se t

AREA area

Format 4

FETCH

FIND
[NEXT DUPLICATE WITHIN] RECORD r e c o r d .

Format 5

FETCH \

FIND
• record VIA [CURRENT OF] SET s e t [USING' i t e m - l i s t]

REV. 0 - 14

MRU5 DATA MANAGEMENT SYSTEMS

Format 6

FETCH

FIND
NEXT DUPLICATE WITHIN SET s e t USING i t e m - l i s t

GET

GET [i t e m - l i s t] .

IF

Format 1

IF set SET [NOT] EMPTY
fortran-label-1

NEXT

[[;] ELSE f o r t r a n - l a b e l - 2] .

Format 2

IF RECORD [NOT]
MEMBER

OWNER
OF .

s e t SET

ANY SET

f o r t r a n - l a b e l - 1

NEXT

[[;] ELSE f o r t r a n - l a b e l - 2] .

INSERT

INSERT INTO .
SETS s e t - l i s t

ALL SET[S]

INVOKE DBMS

INVOKE DBMS .

MODIFY

MODIFY [i t e m - l i s t]

- 15 Ju ly 1981

SECTION 5 MRU5

MOVE

Format 1

MOVE CURRENCY STATUS FOR

Format 2

MOVE .

RUN-UNIT
RECORD record
AREA area
SET set

TO identifier .

RECORD-NAME|

AREA-NAME)

(RUN-UNIT
RECORD record

FOR { AREA area \ TO iden t i f i e r -2
SET set I
identifier-1)

ON ERROR

Format 1

[;] ON ALL ERRORS GO TO cobol-procedure .

Format 2

[;] { CN ERROR integer-list GO TO cobol-procedure-1 }

[ON OTHER ERRORS GO TO cobol-procedure-2] .

OPEN AREAS

Format 1

OPEN ALL AREAS

USAGE[-]MODE IS
EXCLUSIVE

PROTECTED

RETRIEVAL

UPDATE

REV. 0 16

MRU5 DATA MANAGEMENT SYSTEMS

Format 2

OPEN AREAS a r e a - l i s t - 1

USAGE[-]MODE IS
EXCLUSIVE

PROTECTED

RETRIEVAL

UPDATE

"; AREAS a r e a - l i s t - 2

USAGE[-]MODE IS
EXCLUSIVE ~| [RETRIEVAL

PROTECTED [UPDATE

PRIVACY KEY

Format 1

PRIVACY KEY FOR
EXCLUSIVE

PROTECTED

RETRIEVAL \

UPDATE

AREAS a r e a - l i s t '
OF I

ALL AREAS
IS

identifer

literal

Format 2

PRIVACY KEY FOR

REST
STORE
GET
MODIFY
INSERT
REMOVE
DELETE MANDATORY
DELETE SELECTIVE
DELETE ALL
FIND

OF
RECORDS r e o o r d - l i s t

ALL RECORDS
IS

i d e n t i f e r

l i t e r a l

- 17 Ju ly 1981

SECTION 5 MRU5

Format 3

r /
PRIV/CY KEY FOR

REST
STORE
GET
MODIFY

_

OF DATA-ITEMS i t e m - l i s t IS

Format 4

{literal identifier

PRIW£Y KEY FOR
REST

INSERT
REMOVE
FIND

OF

/ _J
SETS s e t - l i s t '

ALL SETS
IS

i d e n t i f e r

l i t e r a l

REMOVE

REMOVE FROM -
SETS s e t - l i s t

ALL SETS

START TRANSACTION

START TRANSACTION i d e n t i f i e r
, UPDATE

, RETRIEVAL

STORE RECORD

STORE record .

SUBSCHEMA

SUBSCHEMA subschema OF SCHEMA schema .

REV. 0 5 - 1 8

MRU5 DATA MANAGEMENT SYSTEMS

SUPPRESS

SUPPRESS
ALL

RECORD
AREAS
SETS s e t - l i s t

- 19 July 1981

SECTION 5 MRU5

THE MIDAS USER'S GUIDE - IDR4558

The following i s a compilation of error corrections and addenda. The
changes are listed on a section by section basis.

Section 2 Changes

On page 2-3, the first sentence should read:

; • Secondary key types and sizes — these are optional and should
be used when you want more than one search key for the f i l e .
Secondary search keys do not have to be part of the data record

1 e x c e p t i n COBOL.
»

Page 2-10 states that a read-write lock setting for n readers and n
writers i s "equivalent to the PRIM3S IWLOCK setting of 3". This i s
incorrect. Instead, what was meant was that you would use the FUTIL
"3" setting to set the f i l e read-^write lock to n readers and n writers.

On page 2-11, the word "protected" should read "projected."

Section 3 Changes
l

There are several new messages output by KBUILD during the process of
• building a file. Most of them should not concern the user as they are

simply informative and do not indicate difficulties. The diagnostic
messages make more sense if you understand how KBUILD goes about
building a MIDAS file. Briefly, KBUILD builds a MIDAS file in one or
more stages, called "passes." On each pass, one or more index subfiles
are built or are deferred for building during a subsequent pass. The
KBUILD message:

FIRST BUILD/DEFER p/\sS COMPLETE

simply indicates that KBUILD has finished building the data subfile,
(if the primary index needs to be built) and has built one or more
indexes while possibly deferring the building of others. KBUILD defers
the building of an index only if the index to be built is empty and the
user-provided input is unsorted. During the first pass KBUILD puts the
unsorted input entries for each such index into a temporary "defer"
file. After the first pass is complete, KBUILD sorts the individual
defer files and builds the index subfiles from the now sorted data.

Each time an index is sorted, KBUILD prints out a message indicating
which index it is going to sort. After the sort is complete, the
message:

REV. 0 5 - 2 0

MRU5 DATA MANAGEMENT SYSTEMS

SORT COMPLETE

is printed. Similarly, KBUILD announces the building of each index.
For example:

BUILDING INDEX 0

After this index is built, the message:

INDEX 0 BUILT

is displayed. When KBUILD has finished building the data subfile and
all the index subfiles that needed to be built, it displays the
message:

KBUILD COMPLETE. i

and control returns to PRIMDS (unless you are running KBUILD out of a
command file). I

On page 3-32, the word "under" should be eliminated from the first
sentence in paragraph one.

Section 5 Changes '

On page 5-3, the word OUTPUT on the second line from the bottom should
be INPUT instead.

1

Section 6 Changes <

On page 6-18, the description of the buffer argument incorrectly reads,
"The size of the data record buffer" when it should be simply "The data
record buffer."

Also on page 6-18, it should be noted that the bufsiz argument is
always supplied in words.

On pages 6-21 and 6-31, the argument file-no was mistakenly emitted
from the argument explanation list. Please insert the following in
between the index and bufsiz arguments on these pages:

file-no Set this to 0: obsolete.

On page 6-32, the description for FL$FST incorrectly reads, "Tells
FIND$ to the position to first entry..." when it should read, "Tells
FIND$ to position to the first entry...". The sentence should now read
correctly.

On page 6-49, the argument listed as key value should be simply key.

21 July 1981

SECTION 5 MRU5

On pages 6-52 and 6-58, the key argument was inadvertently emitted from
the calling sequences, although it does appear in the argument
explanation lists on pages 6-53 and 6-59. The key_ argument should be
inserted between the buffer and array arguments in these calling

' sequences.

Section 7 Changes

! On page 7-18, delete the section START and Locked Records.

On page 7-19, the phrase KEY IS should be inserted after PHONE-FILE in
the example at the top of the page.

; Section 9 Changes

On page 9-15, the second and third comment lines from the top of the
, page should be omitted. This program contains no on-units for the KEY

condition (using an invalid key in a file access operation). This is
why the error messages shown in the output occur. To help clarify
this, the following sentence should be added before Reminders, on page
9-15:

"The error conditions are raised because there is no on-unit to
I trap KEY errors: see ERROR HANELING below."

Section 12 Changes

1 The information contained in the Note on page 12-11 is very important.
t We' re mentioning it here to make sure that the note is not overlooked.

Section 13 Changes

On page 13-5, there should be a step 4 indicating that the read/write
file locks on all MIDAS files should be changed to 2 (n readers and 1
writer) when disabling concurrent process handling.

Section 14 Changes

On page 14-2, the argument nam!en does not have to be declared as
INT*2, as implied in the book"! This is the default however.

On page 14-11, the statement under Why Use Offline Routines? claims
that offline routines are faster because they are not shared. This is
only part of the actual story. Offline routines are not meant to be
shared and therefore are not concerned with multi-user access to a
file. Therefore they don't write out index blocks after each index
entry is added to a file, as ADD1$ does. (Online routines must always
write index blocks out to the file after each operation on the block so

REV. 0 5 - 2 2

MRU5 DATA MANAGEMENT SYSTEMS

that the file will not be damaged by concurrent access and so each user
will have a consistent view of the file while accessing it.) By not
writing out the index blocks each time, a considerable amount of I/O
overhead is saved, making offline routines faster than their online
counterparts. In addition, the offline routines bypass the concurrent
process handling method which normally single-threads MIDAS use for
online routines. Thus only one person can have access to a MIDAS file
at a time when that file is being processed by an offline routine.

On page 14-34 under ERROPN: the funit argument should always be
specified as a variable and not a constant, because it returns a value
of 0 if the call to ERROPN is unsuccessful.

Section 15 Changes

Page 15-8 discusses the EXTEND option of CREATK as a method of making
the index subfile longer. This method is preferable to the
double-length index method which can also be used to lengthen an index
subfile. Users are urged to use the EXTEND option whenever they need
to enlarge an index subfile. Please note this carefully, as it was not
explicitly stated anywhere in the book.

Index Changes

On page X-9, some of the listings for KX$RFC and KX$TIM incorrectly
refer to Section 4 instead of Section 14.

General Changes

The file-no argument, which appears in all of the FORTRAN subroutine
calling sequences, can.be set to any value the user desires. Currently
the documentation infers that file-no should be set to 0. This
argument is ignored completely by MIDAS and is being preserved only for
compatibility.

- 23 July 1981

http://can.be

SECTION 5 MRU5

THE PRIME/POWER GUIDE - PDR3709

Special Characters

Replace page 1-12 by the following:

Several characters reserved for special use by POWER cannot be included
in descriptor names or filenames. These special characters a r e :

. period
, comma
(l e f t parenthesis
) r igh t parenthesis
/ s lash
* as te r i sk
+ plus
- minus
= equal
< greater than
> less than
1 single quote
pound (number) sign
$ dollar sign
! exclamation mark
% percent sign
ESCape key (ESC on most terminals)

Characters that do NOT appear in the above list, like colon (:) and
semicolon (;) are assumed to be legal characters in both filenames and
descriptor names.

Exceptions: A few of the special characters listed above CRN be used
in POWER Til enames. These characters are:

period (.)
minus(-)
pound sign (#)
dollar sign ($)

For example, the names $T0TAL and ACCT# are legal POWER filenames, but
they would not be legal descriptor names.

CREATE Options

Add the following to page 4-22:

A MIDAS search descriptor may not be added or have its data length or
type changed with the CREATE options. If you wish to make this kind of
change (or wish to change a display descriptor to a search descriptor),
you should perform the following steps:

1. Dump all data to a file.
2. Destroy the original file.

REV. 0 5 - 2 4

MRU5 DATA MANAGEMENT SYSTEMS

3. Exit POWER and tredel the data file.
4. Enter POWER and recreate the file as desired.
5. Batch add the data.

If any descriptor names are being changed for the new file, these name
changes should be made on the old file (using the CHANGE DESCRIPTOR
option). Otherwise, date in those descriptors will not be added.

All structural changes to a file of any type that contain data should
be made in the same manner.

Redefining a MIDAS Index

Replace the description on page 4-24 with:

The above example introduces a prompt displayed only when a MIDAS file
is changed. A "NO" response should be given to the prompt "DOES
DESCRIPTOR REDEFINE A MIDAS INDEX?", unless:

• a search descriptor is deleted
• a search descriptor's record position is changed.

Change to LIST Command Syntax

On page 6-5 the LIST command syntax is given as:

LIST (file filename)

It should read:

LIST (formname -specification)

Default Display Formats

Change page 7-10 to read:

Unless a user has created a heading for a file, all descriptors will be
displayed using POWER'S default formats, as listed below:

Data Type Default Display

NCML (R*8) -ZZZZZZZ.##

NUM2 (R*4) -ZZZZZZZ.##

NUM3 (1*2) -ZZZZZ

NUM4 (1*4) -ZZZZZZZZZZ

NUM5 (Decimal) -ZZZZZZZ.##

NUM6 (COMP-3) -ZZZZZZZ.##

5 - 25 July 1981

SECTION 5 MRU5

If these default displays are now what is wanted, you should create
heading (using HEADING CREATE).

PT65

Add the following to page 7-25:

POWER now functions with the Prime PT65 terminal. Users mu*=t initiate
the downloader (by OA TERM) before entering POWER. As the PT65
operates in low intensity mode, the low intensity visual attribute in a
POWER screen will not function. Entering this characteristic will have
no effect on the screen. Also, fields must not begin before column 3
in a PT65 screen.

HEADING CREATE

There is no reference in the manual to the query for desired numeric
format if the descriptor is numeric. You should know that unless you
want the default display format for that data type, you must enter a
format. A carriage-return response will result in the default
displays.

REV. 0 5 - 2 6

MRU5 DATA MANAGEMENT SYSTEMS

MIDAS CHANGES FOR 18.2

The major changes to MIDAS for 18.2 involve organization of the product
on the master disk and small naming modifications to comply with new
Prime software standards. These changes impact Section 13 of The MIDAS
User's Guide under INITIALIZING MIDAS. Most of this information
impacts the Administrator only, and should not affect most users. Any
changes involved in installation of MIDAS can also be found in the INFO
file on the master disk.

Changes to MIDAS Organization

Pages 13-5 and 13-6 of the MIDAS manual list the names of all the
sub-UFD's and command files that appeared in the MIDAS UFD up until Rev
18.2. As of Rev 18.2, the following changes have been made:

• The MIDAS ufd no longer contains any source files or
utility-building command files. These files, listed on page
13-6, were formerly contained in MIDAS>SCURCE. SOURCE now
exists in a new ufd called MIDASSRC. The MIDAS ufd now contains
insert files, share and install command files, plus the run
files that exist in the sub-ufd's CMDNCO, LIB, SYSCOM, and
SYSTEM.

• The command files to install and share MIDAS remain the same,
but build files have been rewritten in CPL and are now stored in
MIDASSRC. The master file to build all of MIDAS is called
MIDAS.BUILD.CPL and calls all the individual CPL files to build
the MIDAS utilities. These CPL files are named
CREATK.BUILD.CPL, KBUILD.BUILD.CPL, and so forth.

• All source files in the the sub-ufd MIDASSROSOURCE conform to
the new Prime suffix standard. All FORTRAN source files have
the .FTN suffix, all FORTRAN insert files have the suffix
.INS.FTN, and so on.

• For compatibility, all insert files in MIDAS and MIDAS>SYSCOM
exist with and without the proper suffix, for example, PARM.K
and PARM.K.INS.FTN. Use the versions with the new suffixes in
future applications.

• The MIDAS utilities CREATK, IMIDAS, KBUILD, KIDDEL and MPACK do
not accept command line arguments or options (and they never
have). They now report the message:

NO COMMAND LINE ARGUMENTS POSSIBLE

when a user attempts to supply an argument upon invocation.

• MCLUP now recognizes when a user attempts to use the "-USER ##"
option more than once per invocation.

- 27 July 1981

SECTION 5 MRU5

For FORTRAN Users Only

I When deleting entries from a MIDAS file through the FORERAN interface,
flags should be used with care when making calls to NEXT$ before and

) after a call to DELET$. Some users have encountered concurrency errors
I (error 13) when they first call NEXT$ with FLAGS = FL$USE + FL$RET,

then incorrectly call EELET$ with FLAGS = FL$USE, and finally call
j NEXT$ with FLAGS = FL$USE + FL$RET. The error 13 happens because the
! array being used on the call to NEXF$ points to a deleted entry. The
• correct way to perform this sequence is to:

1. Call NEXT$ with FLAGS = FL$USE + FL$RET

i 2. Call DELET$ with FLAGS = FL$USE + FL$RET

3. Call NEXT$ with FLAGS = FL$USE + FL$RET

This pattern should be followed except when deleting the first entry in
an index. In such a case, FL$RET should NOT be set on the call to
DELET$. Instead, FLAGS should be set to FL$FST on the second call to
NEXT$ to avoid problems.

REV. 0 5 - 2 8

MRD5 FORMS

SECTION 6

FORMS <

1
I

1

THE FORMS PROGRAMMER'S GUIDE - PDR3040 1

Changes to FORMS

The FDL source line limit has been extended to 90 characters (from 72).
This implies that any text that used to follow column 72 must now be
commented, i.e. the text must be preceded by /*.

FDL now supports the correct standard suffices, .FORM for source, .FBIN
for binary and .LIST for listing.

FAP handles the standard binary suffix of .FBIN (see the FDL compiler).

TCB handling has been extended to allow (if required) machine unique
TCB lists, instead of the standard system unique TCB. This can be
achieved by corying TCB.BN from FORMS* and placing it in machine unique
TCB* ufds. The original under FORMS* would then no longer be needed.

The maximum user number allowed in the TCB list has been extended from
64 to 128.

- 1 July 1981

MRU5 PRIMENET

SECTION 7

PRIMENET

CHANGES TO NETCFG

The changes shown below apply to Section 5, Network Configuration, of
The Primenet Guide, IDR3710.

Additional Public Data Network

PRIMENET now supports the TYMNET public data network. The name TYMNET
is a correct response to the NETCFG dialog question, "Your national
Public Data Network (PDN)?" (Users who do not have FDN support do not
see this NETCFG question.)

NETCFG Changes for FAM II

The dialogue for the Network Configuration program (NETCFG) has been
modified to allow users to specify whether a node will use FAM I or FAM
II remote disk access. A new question, "Enable FAM II?" has been added
to the dialogue.

The following is a description of the modified dialogue:

Enable FAM II?

YES Enable FAM II on this node. The remote node must also
enable FAM II to you. NETCFG procedes to ask the Naming
Sphere and Ring 0 Password questions below.

NO FAM II will not be enabled. NETCFG asks the Enable FAM I
and Permit Remote FAM questions, below.

Is this node in your naming sphere?

YES Node is in the naming sphere.

NO Node is not in the naming sphere.

Note

This question i s provided for future expansion. Answer
"YES" to this question.

RingO-RingO password?

A 32 character password may be specified for each FAM II
node. Passwords may be changed with the NETCFG -PASSWORD
option. This password i s used to prevent unauthorized nodes

7 - 1 July 1981

SECTION 7 MRU5

or software from making FAM II requests. Whenever FAM II
services are initiated, the source node and password are
checked against the configured FAM II nodes and passwords.

1 If the match fails, FAM II service will be denied.

! A <cr> means no password.

Enable FAM I?
i

f YES Enable FAM I on the node.

r
NO Neither FAM I nor FAM II is enabled for this node.
Permit remote FAM to start disks?

i

YES Allow the remote system administrator to add your disks.

* NO Do not allow the remote system administrator to add your
1 disks.

NETCFG -PASSWORD Option

The Network Configuration program (NETCFG) now supports a password
modification option. This allows users to create, delete or change
passwords for all nodes in a specific network without reconfiguration.
The following is an example of the NETCFG -PASSWORD dialogue:

OK, netcfg -password

Review old network configuration? yes

Rev 18.2 network configuration file

Ring Net
Name Addr Ring ID FAM INFO RLOG

ME QWERTY 1
ASDF 2 II/SAME-NS Yes

RingO-RingO password: GGJJG

Do you want t o update node passwords? yes

Node name (CR if done) ? asdf
New RingO-RingO password? mnbv

Node name (CR if done)?

Review new network configuration? yes

Rev 18.2 network configuration f i l e

REV. 0 7 - 2

MRU5 ERIMENET

Ring Net
Nane Addr Ring ID FAM INFO RLOG

ME QWERTY 1
ASDF 2 II/SAME-NS Yes

RingO-RingO password: MNBV

OK,

- 3 July 1981

MRU5 DPTX

SECTION 8

DFTX

OTRODUCTION

Significant changes have been made to the DPTX product a t Rev 18 .2 .
The following i s a l i s t i n g of these changes and the sect ions of The
DPTX Guide, IDR4035 t ha t they impact: ~ ~ '

• Documentation correct ion t o OWLDSC command — Section 2

• Changes t o TCF command — Section 2

• Changes t o TSF command — Section 2 i

• Changes t o the Block Device Interface (BDI) — Section 3 '

• New DPTCPG, DPTX S t a r t u p , Warm S t a r t , M u l t i l i n e TM — Sec t ion 4

CORRECTION TO OWLDSC COMMAND |

On page 2 - 9 , no s t a r s should appear arround t h e "USAGE:" message. The
message i t s e l f should read:

USAGE: OWLDSC [FAST] [NOLOCK] [REPORT] J

CHANGES TO DPTX/TCF

The following changes have been made t o DPTX/TCF (pass-through) for Rev
18.2:

• Changes in the TCF command l ine

• Modifications for the use of the TEST REQUEST key

• New connect time error message

• New post-invocation error message

• Multiple l i n e s and general pol l ing

Use of PA2 and TEST REQUEST Keys

Program Access key 2 (PA2) i s now avai lable for the QUIT function. In
the command l i n e :

- 1 July 1981

SECTION 8 MRU5

TCP HOST hname -TERMINAL tname [-QUIT ' q - s t r i n g '] [-PA m] [-PF n] [-TR]

the value of m may be 1 , 2 , or 3 .

The use of the TEST REQUEST key may be inhibi ted (not recognized) for
some terminals . This key i s disabled in the DPTX configuration when
general pol l ing i s enabled for the control un i t t o which the terminal
i s at tached. I t i s enabled i f general pol l ing i s not used.

New Connect Time Error Message

The following message i s new for Rev 18.2:

Correct syntax i s :
TCP -HOST <host_name> -TERMINAL <terro_name> [-PF <pf_key#>]

[-OiUIT] ' q j s t r i ng ']
<term_name> can be ' * * (use t h i s t e rmina l) .
PF (program function key # ' s 1-12 can be changed t o

PA (program access key t ' s l thru 3)
or TR (t e s t request — no number needed)

OK,

The user fa i led t o follow the correct command format. Reenter the
command l i n e . TCF returns the invoking terminal t o PRIMOS command
level after sending t h i s message.

New Post-Invocation Messages

The following message i s new to DPTX/TCF as of Rev 18.2:

HOST not responding, returning t o PRIMOS.
OK,

The following message i s sent t o the invoking terminal when the block
mode v i r t u a l link to the terminal i s broken and a l l attempts a t
recovery f a i l . The invoking terminal i s returned t o PRIMOS command
l e v e l :

Unable to re ta in terminal l ink, data possibly l o s t ,
returning t o PRIMOS.

OK,

Multiple Lines and General Polling

The t r a f f i c manager (TM) of DPTX/PCF now supports mult iple synchronous
l ines and general pol l ing, as described below for DPTX/DSF.

REV. 0 8 -

MRD5 DPTX

CHANGES TO DPTVTFS

The following changes have been made t o DPTX/TSF for Rev 18.2:

• Multiple Synchronous Lines

• General Polling

Multiple Synchronous Lines

DPTX/TSF can now be configured for more than one synchronous line.
Prior to Rev 18.2, only one line was supported. As before, a given
synchronous line may have more than one control unit address
configured, that is, DPTX/TSF supports multidropping of IBM control
units.

General Polling

DPTVTSF has been enhanced to do general polling of attached IBM
control units, in addition to specific polling. This has been
implemented as a new option under SP3270. See the information on
DPTCFG on how to configure general polling.

General polling is usually preferred over specific polling (which is
the default configuration), since general polling queries an entire
control unit which responds if any of its devices has text or certain
kinds of status to send. In contrast, specific polling queries only a
specific device. Use of general polling reduces the number of
nonproductive "nothing to send" polls.

CHANGES TO BLOCK DEVICE INTERFACE (BDI) CALLS

The following changes have been made to the Block Device Interface for
Rev 18.2:

• New BDKEYS insert files

• Changes to BDATT, BDSET, BD$INP and BD$INF

• A new call, BD$LST

BDKEYS Insert Files

Insert f i les for PL/I and assembler programs using the Block Device
Interface (BDI) have been added to the UFD SYSCOM. SYSCOM now contains
these insert f i l e s :

BD$KEYS.INS.FTN (for FORTRAN programs)
BD$KEYS.INS.PL1 (for PL/I programs)
BD$KEYS.INS.PMA (for PMA programs)

July 1981

SECTION 8 MRU5

BD$ATT: Attaching a device

BD$ATT has a new code parameter, E$PHNA:

E$PHNA: The Protocol Handler for this device is not active; call
ignored.

BD$SET; Set attributes for a Device

The following changes have been made to the BD$SET call:
keys and the inclusion of a new CODE parameter, E$IWST.

a new set of

Keys: The current status of input/output operations performed by the
Protocol Handler on behalf of the BDI user. The current status of
these operations, as they relate to these keys, may be determined by a
call to BD$INF.

K$RSMI: (Default attribute) Enable input from the device. This
causes the Protocol Handler to resume normal input. Device
input is automatically enabled by a nBD$ATT" call. (To
preserve compatibility with earlier versions of the BDI, this
key is functionally equivalent to BD$ENBD, and they are
interpreted the same.)

K$SPDI: Disable device input. The Protocol Handler will stop
soliciting and/or accepting input for this device. The user
may continue to dequeue any remaining device input (BD$INP).
(Again, to preserve compatibility, this key is functionally
equivalent to K$DSBD in earlier versions of the BDI.)

K$ABTI: Abort device input. The Protocol Handler will cease
soliciting and/or accepting input from the device (as for
K$SPDI above). Additionally, at a time of its choosing, the
Protocol Handler will drain the device input queue to the
user. Having completed this, it will reset the abort
condition and leave the device input inhibited. While the
abort is still in effect, the user may not reenable input by
means of the K$RSMI key above, however, once it has been
reset by the Protocol Handler, he may do so if he so chooses.
The user should use this feature with care, as an abort
flushes output statuses (TTOK, TTF: see BD$INP types and
subtypes) as well as device inputs. In such an instance, the
user might well be unaware of which messages were sent to the
device, and which were rejected (if any). Note that an input
abort is entirely independent of the output abort condition
described below.

K$RSM3: (Default attribute) Enable output to the device. The
Protocol Handler will resume sending output from the user
output queue to the device. This option is automatically
enabled by the BD$ATT call.

K$SPDO: Disable output to device. The Protocol Handler will cease

REV. 0 8 -

MRU5 DPTX

dequeuing messages from the user output queue t o output. The
user may continue to queue (BD$0CJT) output to the device
(unti l the queue becomes f u l l) , but no output w i l l be sent t o
the device un t i l output i s reenabled by a BD$SET c a l l of
K$RSMO.

K$ABTO: Abort output. The Protocol Handler w i l l cease dequeuing
messages from the user output queue to send t o the device (as
for K$SPDO, above). At a time of the Protocol Handler's
choosing, i t w i l l drain the output queue form the user of a l l
messages (no indicat ion of how many messages are drained i s
given) , rese t the abort condition, and leave output t o the
device inhib i ted . While the abort condition e x i s t s , the user
may not queue any addit ional outputs (BD$CUT) nor may he
reenable output t o the device. When the the abort condition
has been cleared, as can be determined by a c a l l to BD$INF,
the user may then reenable output and/or queue output as he
sees f i t . Note tha t the output abort condition i s en t i r e ly
independent from the input abort condition described above
(except as affected by the Protocol Handler).

K$INWT: Enable the "input waiting" condition for BD$0UT. If the user
attempts t o output (BD$CUT) to a device which has input
waiting for him, the attempt i s re jec ted and an error code of
E$INWT i s returned. This condition may also be enabled a t
configuration time, in which case the user may not enable or
d isable i t (a re turn code of E$INWT i s given, and the c a l l i s
ignored).

K$IWOF: (Default a t t r i bu t e) Disable the "input wait ing" condition on
BD$CUT. The user may queue output t o the device Protocol
Handler regardless of the presence of any device input
awaiting h i s acceptance. This condition may be enabled a t
device configuration time, in which case the user may not
disable i t (an error code of E$IWST i s re turned) .

K$PA2P: Disable DPTX Support Traffic Manager (STM) trapping of the
PA2 key. DPTX-TSF uses the PA2 key as a "quit" or "break"
key, which, if depressed while "qui ts" a re enabled, causes an
immediate return of the u s e r ' s process t o PRIMOS command
l e v e l . If the PA2 t r ap i s disabled, the PA2 key wi l l not be
recognized as a "quit" key by the STM, and w i l l be passed
through t o the user program while t ha t device i s i n block
mode. K$PA2P i s inval id for any other protocol .

K$PA2Q: Enable the aforementioned t r ap of the PA2 key by the DPTX
Support Traff ic Manager. K$PA2Q i s inval id for any other
protocol .

K$RAWD: Send the data in data (and the f ie lds in outarr) t o the
Protocol Handler for transmission t o t h i s device without
checking the va l i d i t y of tha t data , or performing any
t r ans l a t ions on i t . This key wi l l be re jected (at the BDI)
for devices whose Protocol Handlers do not accept such data.

- 5 July 1981

SECTION 8 MRU5

Code; The code description is:

E$IWST: "Input waiting" condition enabled in configuration; call
ignored.

BD$INP: Input from a Device.

The following changes have been made to the BD$INP call:

• A new key value, K$WATT

• A new code error value, E$BPRH

• A new argument, period

CALL BD$INP (device, key, data, length, inparr, code, period)

K^ATT: Wait until some input is available and return with it, or
until the specified time limit (period — tenths of a second)
is exceeded and return with an error code of E$NINP if no
input is available.

E$BPRH: Bad protocol handler defined in configuration.

period A time period specified by the user to indicate the length of
time to wait for input before returning to the user if no
input is at hand when the call is made. This value is
expressed in tenths of a second, and is only examined when a
key of K$WATT is specified. In this manner, BD$INP remains
compatible with earlier versions which did not have this
capability or parameter. If the value is less than or equal
to 0, it is equivalent to making the same call with a key of
K$WATT. If the time period runs out and no input is received
an error code of E$NINP is returned. If input is available,
the data is returned to the user, without any indication of
how long the wait was.

BD$INF: Information about a device

The following changes have been made to BD$INF:

• A new key value, K$INFS

• Redefinition of the infarr array

K$INFS: BD$INP will return static device data in words one through 4
of infarr. The contents of data are left untouched.

infarr: A ten-word array to be filled with information about the
device:

For key = K$INFN or K$INFD:

REV. 0 8 - 6

MRU5 DPTX

word 1: Protocol type of th i s device.

0: undefined

1: DPTX/TSF (3270 Terminal Support)

2: DPTX/DSC (3270 Emulation port)

word 2: Device status and configuration bits.

The configuration bits are set at configuration
time (the DPTX command at the system console).

bit 1-10: Reserved.

bit 11: Physical status: 1 = up, 0 = down.

bit 12: "input waiting" condition for BD$0UT
enabled by configuration. If true (= 1),
the user must retrieve (BD$INP) any input
data from the device queues before
sending any output (BD$CUT).

bit 13: Input allowed from device. If true, the
protocol handler will solicit (or accept,
as appropriate for the protocol) input,
provided the user has not inhibited it
(see below and BD$SET).

bit 14: Output allowed to device. If true, the
protocol handler will send user output
(queued through BD$OUT) to the device,
provided the user has not inhibited it
(see below and BD$SET).

bit 15: Block mode allowed. The user may attach
this device in block mode. (This is
somewhat redundant as the user must be
able to attach the device if he is to do
the BD$INF call.)

bit 16: Prime standard terminal. This device may
be used as a command device (i.e. the
user may converse with PRIMDS through
it).

word 3: Maximum input and output buffer length defined for
this device. This is the maximum value of length,
which is acceptable on a BD$OUT call with key of
K$XMTD. It is also the largest size in characters,
which any input from this device can attain. The
user program should provide an input buffer of at
least this length on BD$INP calls to ensure enough

8 - 7 July 1981

SECTION 8 MRUS

rocm for the maximum sized message.

word 4: Character codes used by the device (b i t s 1-8), and
the user (b i ts 9-16).

0: ASCII

1: EBCDIC

The user can control the value of the l a t t e r (user
character code) through the use of the BD$SET c a l l
(keys of K$ASCD — ASCII and K$EBCD — EBCDIC).

word 5: User a l te rab le device enable/disable s t a t u s . The
user may indirect ly control the input and output
data streams from the Protocol Handler t o the
device and to the user by c a l l s t o the BD$SET
rout ine. This word describes the current s t a tus of
those requests.

b i t 1-10: Reserved.

b i t 11 : PA2 key DPTX-TSF Support Traffic Manager
(STM) t rap disabled. This indicator i s
not va l id for non-DPTX-TSF command
terminal devices. When false (= 0) , the
STM wi l l t rap the PA2 key on input from
such a device, signal a "quit" condition,
and not pass the key t o the user program.
When true (= 1) , the STM w i l l pass the
PA2 key t o the user program exactly as i t
would any other device input.

b i t 12: Input waiting condition enabled. If t h i s
b i t i s turned on (= 1) (or b i t 12 of word
2 above), the user must r e t r i eve device
input, if any, before sending output
(BD$OUT) to the device. This se t t ing
only has effect i f the "input waiting"
condition was not enabled in the
configuration. This b i t i s a l t e red by
c a l l s t o BD$SET with keys of K$IWON
(condition enabled) and K$IWOF (condition
disabled) . I t i s disabled when the user
attaches (BD$ATT) the device.

b i t 13: Abort Transmit in progress. If t rue
(= 1) , the user has requested (BD$SET) a
transmit abort a t some e a r l i e r time, and
i t i s s t i l l in progress. Input from the
device i s inhibi ted . At some l a t e r time,
the Protocol Handler w i l l drain the
device input queues and r e s e t the abort
condition. The user may not re-enable

REV. 0 8 - 8

MRU5 DPTX

(BD$SET) device output until the abort
has been completed. Further, the user
may not queue (BD$OUT) output for the
device while the abort is in progress.
However, when the abort condition has
been cleared, the user may queue output,
even though output is still disabled, at
least until the output queue to the
Protocol Handler fills up.

bit 14: Receive Abort in progress. If true (= 1)
the user previously requested (BD$SET) an
input abort for this device, and it is
still in progress. At some later time
the Protocol Handler will drain the
device input queue and reset the abort
condition. Device input is disabled, and
the user may not re-enable (BD$SET) it
until the abort condition has been
cleared. However, the user may dequeue
(BD$INP) remaining device input from the
queues while the abort condition is in
progress.

bit 15: Output suspended. If true (= 1), the
user has previously requested (BD$SET)
either a transmit abort or suspension.
While output is suspended, the Protocol
Handler will not send any output to the
device. However, provided a transmit
abort is not in effect, the user may
queue output (BD$OCJT) for the device
until the device output queue fills up.
The user may reset (BD$SET) this
condition provided a transmit abort (see
above and BD$SET) is not in progress.

bit 16: Input suspended. If true (= 1), the
Protocol Handler is not accepting input
from the device. The user disabled
device input by a previous call to
BD$SET. The user may retrieve (BD$INP)
any remaining input from the device input
queue while the input is disabled. The
user may re-enable (BD$SET) device input
provided an input abort is not in
progress.

word 6: (reserved)

words Protocol-specific status information, if any. See
7-10: DPTX/DSC Specific Information and DPTX/ESF Specific

Information in Section 3 of The Distributed
Processing Terminal Executive Guide, IDR4035, for

July 1981

SECTION 8 MRUS

detai l s for some Prime-supplied protocols.

For ke^ = K$BJFS:

word 1: Device type:

0: terminal

1: printer
This is presently used for 3270 printer emulation
(as part of DFTX/DSC) and support (as part of

EETX/TSF) and indicates the type of device rather
than the Protocol Handler.

word 2: Device type flags:

bit 12 = 1: "input waiting" condition enabled (in
configuration).

bit 1 3 - 1 : input allowed from device.

bit 1 4 - 1 : output to device allowed.

bit 15 " Is block mode allowed.

bit 1 6 - 1 : this device is a Primos terminal.

word 3: Screen size: Maximum physical buffer size (bytes)
of the device.

word 4: Protocol type:

0: undefined

1: DPTX/ESF (3270 Terminal Support)

2: DPTX/DSC (3270 Emulation port)

words (reserved)
5-6:

words Protocol-specific status information, i f any. See
7-10: DPT50)SC Specific Information and DPTtyTSF Specific

Information in Section 3 of The Distributed
Processing Terminal Executive Guide, 3DR4035, for
detai l s for some Prime-supplied protocols.

BDgLSTs List BDI Configuration Data

CALL BD$LCT(key, name, nameln, datbuf, datlen, code)

This i s a new c a l l . I t fetches information about the current DPTX
configuration as maintained by the Block Device Interface.

REV. 0 8 - 1 0

MRU5 DPTX

key Indicates the type of information requested by the user.
This argument is referenced but not altered by BD$LST.

K$INFD: Information (as described below) about a specific
device whose "name" is specified in name is
returned in datbuf.

K$DJFN: Information (as described below) about a specific
device whose logical station ID is specified by the
caller in datbuf(1) is returned in the remainder of
datbuf and in name.

K$LTAT: A list of the logical station ID numbers which
correspond to devices residing on the logical
synchronous line specified in datbuf(1) is returned
in the remainder of datbuf.

K$LPAT: A list of the logical Poll Group numbers which
correspond to poll groups (CUs) residing on the
synchronous line specified in datbuf(1) is returned
in the remainder of datbuf.

K$PTAT: A list of the logical station ID numbers
corresponding to devices in the poll group
(attached to the OJ) whose logical poll group
number is specified in datbuf (1) by the user is
returned in the remainder of datbuf.

K$PATD: A description of the poll group whose logical poll
group number is specified in datbuf(1) is returned
in the remainder of datbuf.

K$BSYS: Get system data. The total number of poll groups
and the total number of devices in the
configuration, the identification of the protocol
handler and the number of devices and the number of
poll groups on each line is returned to the caller
in datbuf.

name The name of the device for key = K$BJFN and K$INFD. For key
= K$INFD, the name must be specified and must exist in the
TAT definition tables. For key = K$INFN, as many characters
(left justified, blank filled) of the device name as will fit
(as specified in nameln) are returned to the user in name.
If the device name must be truncated, a code of E$BFTS
(buffer too small) is returned. The user is not informed of
the actual name length. BDI device names are a maximum of 32
characters long. For K$INFN, if nameln is specified as zero,
name is left unaltered. For all other values of key tiiis
field is unaltered and not referenced by BD&iST, the user may
therefore specify it as he wishes, but it may not be omitted.

nameln The length of name in characters. Specified by the user.
For keys of K$INFN and K$INFD, this argument is referenced

- 11 July 1981

SECTION 8 MRU5

but not altered. For other values of key, this argument is
not referenced.

datbuf An array of returned data, the contents of which vary
depending on the key specified.

K$INFD The device specified by name is

K$INFN described in datbuf. If code = E$BDEV (device not
found), the contents of this array are invalid.

word 1 Logical station id of the device.

word 2 Protocol type:

1 = DPTX Terminal Support

2 = DPTX Data Stream Compatibility

word 3 Device type:

0 = terminal

1 = printer

word 4 Station capabilities (bit encoded): This
word is exactly the same as INFARR(2)
returned from a call to BD$INF with a key of
K$INFN or K$INFD.

' bits 1-11: (reserved)

• bit 12: Read before write required.

bit 13: Input allowed from device.

bit 14: Output to device allowed.

bit 15: Block mode operation permitted.

bit 16: Prime Standard Terminal (DPTX-TSF
only).

word 5 Maximum buffer size of the device.

word 6 Maximum message size defined for the
device's protocol.

word 7 Physical device character set:

0 = ASCII

1 = EBCDIC

REV. 0 8 - 1 2

MRU5 DPTX

word 8 Station status:

1 = offline

2 = device marked down by protocol handler.

3 = device operational.

word 9 Owner's process number (if zero, the device
i s not owned).

word 10 Device address (word 1) in that device's
physical character code. (For DPTX, only
the lower byte i s valid, and i s the EBCDIC
representation.)

word 11 Device address (word 2) in that device's
physical character code. (For DPTX, only
the lower tyte i s valid, and i s the EBCDIC
representation.)

word 12 Physical station identification:

b i t s 1-8 Logical line number (for
synchronous l ines , th is value i s in the
range 0-7).

b i t s 9-16 Logical poll group number.

word 13 Printer information (not valid for devices j
other than printers) :

(
bi t s 1-8: Platen length.

b i t s 9-15: (reserved)

b i t 16: Vertical Forms Control on. (DPTX
3270 products only)

word 14 Maximum output queue length.

word 15 Maximum input queue length.

K$LTAT List a l l the logical station IDs corresponding to
devices residing on the synchronous line (0-7)
specified in datbuf (1). If datlen i s less than two,
no processing i s performed for th i s cal l except
identification of the key, and a code of E$BPRR is
returned.

datbuf(1) The synchronous l ine number. Supplied by
the caller , th is i s not altered by
BD$LST. If i t s value i s outside the
permissible range of synchronous l ines, a

8 - 13 July 1981

SECTION 8 MRU5

code of E$BDEV is returned to the user.

datbuf (2) The number of block devices configured on
the specified line.

datbuf(3...) The logical station IDs of the devices on
this line. If datlen indicates a buffer
too small to hold all the ids, this list
is truncated at the last one which can
fit in datbuf, and a code of E$BFTS is
returned. If datlen exceeds the size
required, the remainder of datbuf is
valid only up to the number of entries
specified in datbuf(2) (i.e. if datbuf(2)
equals one, datbuf(4) through
datbuf(datlen) are invalid).

K$LPAT Return a list of all the poll groups defined on the
synchronous line specified in datbuf(1). If datlen is
less than two, no processing is performed for this
call other than the identification of the key, and a
code of E$BPAR is returned. The returned values are
similar to those specified for K$LTAT.

datbuf (1) The synchronous line specified by the
user. This entry is not altered by
BD$LST. If it lies outside the
permissible range of synchronous lines,
no further processing is attempted, and a
code of E$BDEV is returned.

datbuf(2) A count of the logical poll groups
residing on the synchronous line
specif ied in datbuf (1). If 0, this
indicates that no block device poll
groups are defined on that synchronous
line in the current configuration.

datbuf(3...) A list of the logical poll group numbers
corresponding to poll groups defined on
the synchronous line specified in
datbuf(1). If datlen indicates a buffer
too small to hold all the IDs, this list
is truncated at the last one which can
fit in datbuf, and a code of E$BFTS is
returned. If datlen exceeds the size
required, the remainder of datbuf is
valid only up to the number of entries
specified in datbuf(2) (i.e. if datbuf(2)
equals one, datbuf(4) through
datbuf(datlen) are invalid).

K$PTAT Return a list of the logical station IDs corresponding
to the devices associated with the poll group whose

REV. 0 8 - 1 4

MRU5 DPTX

logical ID number is specified in datbuf(1). If
datlen is less than two, no processing is performed
for this call other than the identification of the
key, and a code of E$BPAR is returned.

datbuf(1) The logical poll group number. Supplied
by the caller, this is not altered by
BD$LST. If its value is outside the
permissible range of poll group numbers,
a code of E$BDEV is returned to the user.

datbuf(2) The number of block devices configured
for the specified poll group.

datbuf(3...) The logical station IDs of the devices on
this poll group. If datlen indicates a
buffer too small to hold all the IDs,
this list is truncated at the last one
which can fit in datbuf, and a code of
E$BFTS is returned. If datlen exceeds
the size required, the remainder of
datbuf is valid only up to the number of
entries specified in datbuf(2) (i.e. if
datbuf(2) equals one, datbuf(4) through
datbuf(datlen) are invalid).

K$PATD Return a description of the logical poll group. If
datlen is less than two, no processing is performed
for this call other than the identification of the
key, and a code of E$BPAR is returned, datbuf is
filled only up to the minimum of datlen or six
elements. If datlen is less than six, a error code of
E$BFTS is returned, but the array is filled up to and
including the last element as described below:

datbuf(1) Logical poll group number. Supplied by the
user. If this value is outside the range
configured, a code of E$BDEV is returned and
no further processing is enacted.

datbuf (2) Poll group type:

1 = DPTX 3270 Terminal Support

2 = DPTX 3270 Terminal Emulation

datbuf(3) The number of the synchronous line upon
which this poll group resides.

datbuf(4) The number of logical devices defined to be
associated with this poll group.

- 15 July 1981

SECTION 8 MRU5

datbuf(5) The poll group status:

1 = Undefined (offline)

2 = Marked down by protocol handler

3 = State is unclear, potentially up

4 = Operational

datbuf (6) Poll group address. For DPTX, only the
lower six bits of this address are valid.

K$BSYS Return system data. This key requests general
information about the current configuration. If
datlen is less than one, no processing is done beyond
the identification of the key, and a code of E$BPAR is
returned. A maximum of datlen or four times the
number of PRIMDS configured synchronous lines plus two
(4 * (# synchronous lines) + 2) parameters are
returned, whichever is smaller. Currently, the number
of PRIMOS-configured synchronous lines stands at
eight. If datlen is the smaller, a code of E$BFTS is
returned. If datlen is the larger figure, the
remainder of datbuf is untouched.

datbuf(1) The total number of block devices
configured.

datbuf (2) The total number of poll groups
configured.

datbuf(3, 7, 11...) The protocol type of the protocol
handler on this line. If this
parameter has the value 0, no
protocol handler is presently
operating on this line.

1 DPTX 3270 terminal support.

2 DPTX 3270 terminal emulation.

datbuf(4, 8, 12...) The PRIMOS user number of the
protocol handler on this line.

datbuf(5, 9, 13...) The number of block devices
defined on this line.

datbuf(6, 10, 14...) The number of poll groups defined
on this line.

This las t set of datbuf parameters i s most easily described
in terms of a PLl-like data structure:

REV. 0 8 - 1 6

MRU5 DPTX

DCL 1 SYSINFO,
2 TOTAL_DEVICES f i x e d b i n (1 5) ,
2 TOTAL_POLL_GROUPS f i x e d b i n (1 5) ,
2 PER_LINE_DESC (NUT©ER_SYNCHRCKaJS_LINES) ,

3 HUEYPE f ixed b i n (15) ,
3 PH_USER_NO f ixed b i n (15) ,
3 LINE_DEVICES f ixed b i n (1 5) ,
3 LDffi_POLL_GROUPS f ixed b i n (15) ;

d a t l e n The s i z e of t h e a r r ay databuf (words) .

code The va lue of t h i s parameter i n d i c a t e s t h e success or f a i l u r e
of t h e c a l l , and t h e reason for t h e l a t t e r i f i t o c c u r s .

0 : Act ion performed, a l l s p e c i f i e d pa ramete r s r e t u r n e d
a s def ined .

E$BFTS: nameln was t o o smal l (key of K$DJFN o n l y) , or
d a t l e n was t o o small (a l l keys) t o c o n t a i n t h e
d a t a .

E$BPAR: d a t l e n was t o o smal l t o even beg in p r o c e s s i n g t h e
r e q u e s t .

E$BLEN: nameln was l e s s than 0 for a key of K$INFN, or l e s s
than or equal t o 0 for a key of K$INFD.

E$DNAV: Device no t found i n c o n f i g u r a t i o n t a b l e s (key =
K$INFD) .

E$BKEY: key no t recognized .

E$B*WD: For a kev^ of K$INFN or K$INFD, t h e v a l u e of d a t l e n
was s p e c i f i e d a s l e s s than 0 .

E$BDEV: The device number (key = K$INFN), l i n e
number (key_ = K$LTAT or K?LPAT), or p o l l group
number (key = K$PATD or K$PTAT) s p e c i f i e d t y t h e
user i n datbuf(1) was o u t s i d e t h e range def ined i n
t h e c u r r e n t c o n f i g u r a t i o n .

E$DNC No BDI c o n f i g u r a t i o n has y e t been done.

The fo l lowing example may serve t o i l l u s t r a t e t h e use of t h i s e n t r y :

INTEGER*2 DATA(15) , CODE, I
$INSERT SYSOOM>KEYS.F
$INSERT SYSCBM>BDKEYS.INS.FIN

CALL BD$LST(K$INFD, ,MY_DEVICE, , 9 , DATA, 1 5 , CODE)
IF(CODE ,NE. 0) GO TO 100
WRITE(1, 50) (DATA(I), 1 = 1 , 15)

50 FORMAT (/ / ' D e s c r i p t i o n of MY_DEVICE:',
+ / ' L o g i c a l S t a t i o n I D : ' , 12 ,

- 17 Ju ly 1981

SECTION 8 MRU5

+ / 'P ro toco l t y p e : ' , 12,
+ / 'Device t y p e : ' , 12,
+ / 'Configurat ion b i t s : * , 12,
+ / 'Device buffer s i ze :* , 15,
+ /'Maximum message size:1, 15,
+ / 'Phys ica l device code : ' , 14,
+ / 'Device s t a t u s : ' , 12,
+ /'Owner user I D : ' , 12,
+ / 'Device address : 1 , 214,
+ / ' L i n e and CU numbers: ' , 18,
+ / ' P r i n t e r information (?) : ' , 14,
+ /'Maximum output queue l e n g t h : ' , 12,
+ /'Maximum input queue l e n g t h : ' , 12//)

STOP
100 CALL ERRPR$(K$NRTN, CODE, 'We blew i t ! ' , 1 1 , 'DEMO', 4)

STOP
END

DPTCFG: THE DPTX CONFIGURATION COMPILER

This section describes the user interface to the DPTX configuration
compiler (DPTCFG) as of Rev 18.2. Included are descriptions of the
command line, and the source level input to the compiler. A complete
catalogue of the error and warning messages follows.

Substantial changes in the functionality of this product have been made
for Rev 18.2, and the program itself has been entirely rewritten. This
section should be carefully read before using the Rev 18.2 DPTCFG.

Introduction

DPTCFG is an external command used to invoke the DPTX configuration
compiler. The principal function of this program is to translate a
source input file describing the physical configuration (as seen by
DPTX) of IBM 3271 compatible devices and "host" machines into a compact
configuration table, which is output as a "binary" file. This latter
file is then loaded into the system when DPTX is initialized.

Several other options have been provided that yield a better user
interface. One may now reverse the compilation process, producing a
source file from a compiled binary. This will be of some use should
the user wish to determine the contents of a binary file and not have
access to the corresponding source file. There is the further
advantage that should the format of the binary file change to
accommodate future changes in DPTX, one may reverse the compilation of
the binary files with the "old" version of DPTCFG and then recompile
with the new version.

An option to generate a tabular description of a configuration at the
user's terminal and/or into a file has been added. As the binary file
format was never intended to be particularly user visible or

REV. 0 8 - 18

MRU5 DPTX

interpretable, this will enable the user to immediately confirm the
contents of a particular configuration. A tabular format i s also
considerably easier to read than the typical source f i l e . Coupled with
this i s an option to suppress binary/source f i l e output.

Lastly, an error l ist ing f i l e generation option has been added. ttiis
output f i l e has an appearance similar to the output l i s t ing f i l es of
the more familiar language translators (FIN, PL/1, e t c .) , and i t l i s t s
the input source statements interspersed by applicable error and
warning messages (if any). This tends to alleviate some of aggravation
caused by the error message handling of the previous product.

Command Line Syntax

The DPTCPG command line i s of the form:

DFPCPG input_treename options

Where input_treename i s the treename of the input f i l e , whether source
(when -REVERSE i s omitted) or binary (when -REVERSE i s present) see
below.

Valid options are:

-OUTPUTFILE treename Specify the output treename that i s to be
-OUTPUT treename used for the configuration f i l e (if -REVERSE

i s not specified) or source f i l e (if -REVERSE
i s specified).

-NOjOUTPUT
-NOUT

-ERRLIBT treename
-ERRL treename

Do not generate an output f i l e (a configura­
t i o n f i l e i f the -REVERSE opt ion i s not
given, a source f i l e if i t i s) . Obviously,
-OUTPUT and -NOjOUTPUT are mutually
exclusive.

Specify the f i l e to contain an error l ist ing.

-REVERSE

-LIST treename
-L treename

-TTY [screen_length]

Use the configuration file as input and
generate a source file as output (the latter
is inhibited if -NOjOUTPUT was also
specified).

Produce a tabular description of the config­
uration, and place it in the file specified.

Produce the same tabular description as for
-LIST (above), except output it to the user
terminal. (The program stops outputting data
to the terminal after a full screen of data
has been output, after a full group or after
several groups if they will all fit on the
screen at one time, and then prompts the user

- 19 July 1981

SECTION 8 MRU5

for a termination (Q or QUIT) or continuation
(anything else).) screen_length defaults
to 23 lines, and must not be less than 9.

The options -ERROR and -REVERSE are mutually exclusive. Pathnames
follow the file naming standards. The following file suffixes are used
by DPTCPG:

.DPTCPG source file

.CONFIG binary file

.ERROR error listing file

.LIST display listing file

The input treename must be present. If any option requiring a treename
(-OUTPUTFILE, -ERRLIST, -TTY) has no treename specified in the command
line, that treename is inferred from the input treename

The default actions for DPTCFG are to generate a configuration output
file using the same base name as the source input file, and to suppress
error and display listing generation.

Should the command line contain an error, DPTCFG will not process the
input file, nor write any of the output files. Similarly, if there is
an error in the input file, DPTCFG will not write any output file, with
the exception of the -ERRLIST file (if specified).

An Example

The following examples are intended to illustrate the more common uses
of DPTCFG.

DPTCPG MYFILE

DPTCFG will search the current UFD for the file MYFILE.DPTCFG, if this
search fails, the file MYFILE will be searched for. Should both
searches fail, DPTCPG will terminate with an appropriate error message.
The file which is found will be used as the source input.

DPTCFG will then open the file MYFILE.CONFIG (creating it if necessary)
and use it for binary output. Error messages (if any) will be sent to
the standard user output stream. When compilation is complete, a
message such as "0002 ERRORS (DPTCFG Rev. 18.2)" will be output.

Another Example

DPTCFG MYFILE -OUTPUT FOO -ERRL -TTY -LIST FOOBAR

The source input file will be searched for as above. The binary output
file POO will be opened. As the input file is compiled an error

REV. 0 8 - 2 0

MRUS DPTX

listing file (MYFILE.ERROR) is produced, listing each source statement
and its line number, followed by any error messages pertaining to it.

If the source file is fault-free, DPTCPG will output a tabular
description into a listing file (FOOBAR) when the compilation is
complete. When this has finished, a similar table will be output to
the standard user output stream (COMCUTFUT file and/or user terminal)
using the interaction previously described.

DPTCPG SOURCE FILES

The two major changes to DFTCFG source file grammar at Rev 18.2 are the
addition of the ENABLE GENERAL_FOLL statement, and the elimination of
the need for device and group numbering. Device and group numbers are
no longer required, and their use is discouraged, but DFTCFG will check
them, if present, for correctness. See DFTCFG Warning and Error
Messages, below.

Source Input File Grammar

Lines in a DFTCFG source file are parsed (for the most part) according
to the rules for the operating system routine RDTK$$. One notable
exception is that a decimal number specified as the object of a keyword
may be entered either as a string of decimal digits or as a colon
followed by a string of octal digits. In the latter case, the octal
number supplied will be appropriately converted to its decimal
equivalent.

Upper and lower case are not differentiated and may be used
interchangeably. The source file consists of series of structured
blocks, each one defining an individual group, where a "group" is
equivalent to an IBM 3271 control unit, whether real or emulated. A
group definition contains exactly one "Define group" statement,
followed by a variable number of "Define device" statements. Both of
these statements are followed by a variable number of keywords which
specify attributes (e.g. address CI). A statement is terminated by the
next occurrence of a major command, or the end of the file. Blank
lines are ignored in statement parsing, and their use is encouraged for
clarity. The basic block structure is outlined below:

DEFINE GROUP
keywor d_at tr ibut es

DEFINE DEVICE
keywor d_attr ibutes

DEFINE DEVICE
keywor d_attr ibutes

The total number of groups and devices must not exceed the constraints
specified by DPTX (currently these limits are 32 groups and 32. devices
in any combination, with the obvious restriction that a device must be
associated with one — and only one — group). DPTX at Rev 18.2
supports no more than 32 devices, total.

- 21 July 1981

SECTION 8 MRUS

Major Statement - DEFINE GROUP

This statement must precede any definitions for devices, and must be
immediately followed by the "DEFINE DEVICE" statement for each device
in the group. The format of the statement i s :

DEFINE GROUP keyword_attributes

The following keyword_attributes are required and w i l l generate an
error i f not present:

PROTOCOL {EM3270 I SP3270}

Specifies the type of service (Emulate or Support) for which
devices in th i s group are to be used. EM3270 specif ies that the
devices are virtual 3277 terminals to be emulated, and SP3270
specif ies that the devices are 3277 terminals t o be supported.
Protocols may not be mixed on the same synchronous l i n e .

LINE n

Specifies the logical line number of the synchronous line which
this group is on. n is currently restricted to the range
0 thru 7.

ADDRESS nn

Specifies the address of this group. The address must be
specified as a two digit hexadecimal number which represents an
EBCDIC character. For a list of valid addresses, consult the "IBM
3270 Information Display System Component Description" (IBM
publication GA27-2749).

The following keyword attribute is optional:

ENABLE GENERAL_POLL

This keyword specifies that particular operations or modes of
operation are enabled for a particular control unit. Currently
there is only one option, and it is restricted to SP3270 control
units. If not specified, the default is to disable general
polling by DPTX to SP3270 control units.

Enabling general polling on SP3270 control units allows DPTX-TSF
support to general poll that control unit. This usually results
in a vast reduction in non-productive line traffic, which yields a
significantly higher throughput for terminal I/O bound
applications. The sole disadvantage to using general polling on a
control unit is that the Test Request key on any terminal attached
to that control unit will be ignored by DPTX-TSF. When this
occurs input will be inhibited until the terminal operator resets
the keyboard. Under DPTX-TCF, the IBM host may also reset the

REV. 0 8 - 2 2

MRU5 DPTX

keyboard, but this latter i s entirely dependent on the host's
programming.

Major Statement - DEFINE DEVICE

This statement specifies the attributes associated with individual
devices in a group. The format of the statement i s :

DEFINE DEVICE keyworcLattributes

The following keyword_attributes are required:

NAME 32 character name

Specifies the name of this device for Block Device attaches. The
first character must be a letter, and the remainder of the name
should follow the PRIMOS standard f i l e name conventions for non
wild-card names.

ADDRESS nn

Specifies the device address, nn i s interpreted the same as in
group addresses.

The following keyword_attributes are optional:

USER n

(Only legal for terminal devices in groups for which the SP3270
protocol has been specified.) Specifies the user number
associated with this device when it is used to issue commands to
PRIMOS.

Note

There must exist Primos terminal buffers associated with
this user number (i .e . the Primos configuration f i l e must
specify the number of terminal users such that i t includes
the users specified for al l TSF devices). Further,
processing of the characters in these terminal buffers by
the Primos AMLC process must be disabled to prevent the
loss of characters (enter AMLC TTYNOP line number where
line number i s the octal representation of the AMLC line
number (nn - 2) normally associated with this user
process. See The System Administrator' s Guide, PDR3109,
for further details on the AMLC coiranancL

ENABLE list_of_enable_options

Specifies the operations which may be performed on this device and
the modes of access to the device available to the user. This
keyword and i t s associated options are il legal for a printer

- 23 July 1981

SECTION 8 MRU5

device.

READ: The device may be read from
WRITE: The device may be written to
BLOCK: The device may be manipulated by Block Device calls
COMMAND: The device is to be considered a user terminal, for

command input to Primos. This option is only valid for
terminals in a SP3270 group.

If ENABLE is not supplied by the user, DPTCPG supplies the
defaults READ, WRITE and BLOCK for EM3270 terminals and SP3270
terminals for which USER has not been specified. Should the user
specify the USER option for an SP3270 device, the ENABLE option
defaults to READ, WRITE and COMMAND if not specified. READ and
WRITE must be enabled on a SP3270 COMMAND terminal.

PRINTER [VFC | PLATEN nnn]

Specifies that the device is a printer. The options VFC and
PLATEN may be specified, but are not necessary.

VFC indicates that the Vertical Forms Control
(hardware page eject) is available on the physical
printer. If this option is not specified for a
DPTX SP3270 printer, page ejects in files directed
to a DPTX supported IBM 3270 printer fcy the
standard Primos spool system will be performed ty
successive line feeds.

PLATEN nnn specifies the platen width in characters. If this
option is included, the decimal number nnn in the
range from 1 to 255 inclusive must be specified.
If this option is not included, the printer will
be assumed to have a platen width of 80
characters.

REV. 0 8 - 2 4

MRU5 DPTX

Sample Input F i le

The following i s a sample input f i l e and the tabular l i s t i n g f i l e
produced from i t :

Define Group
Address 40
Line 0
Protocol SP3270
Enable General_poll

Define Device
Name Support, 1
Address 40
Enable Read, Write, Block, Command
User 32

Define Device
Name Support,2
Address CI
Enable Read, Write, Block, Command
User 33

Line 0 Protocol: SP3270 EBCDIC
Name Addr Inq Outq Type Enable

Maxmsg Platen VFC User

Group Address: 40, General poll

SUPPORT. 1 40 7 3 Terminal Read Write Block Cmd
2048 32

SUPPORT. 2 CI 7 3 Terminal Read Write Block Cmd
2048 33

DPTCFG WARNING AND ERROR MESSAGES

Error and warning messages can be categorized by their origin: errors
in the command line parsing or in file system operations, and those
caused by violations of the source grammar (or binary data structure
rules — if the REVERSE option is specified) in the input file.

Command line and file system errors are fairly simple, and the error
messages are very clear. As these error messages are generated more by
the operating system than they are by DPTCFG, this document will not
attempt to describe them. For further information on these errors, the
reader is referred to The Prime User's Guide IDR 4130,

Command line syntax violations result in messages describing the
correct command syntax, and /termination of the program. No output

8 - 25 July 1981

SECTION 8 MRU5

files are created, nor is the input file affected.

File system errors encountered while processing results in an immediate
termination of the program. Furthermore, any output files that have
been created as a result of the invocation of DPTCFG are deleted. The
input file is unaffected.

Any type of error inhibits the output of the DISPLAY or LISTING
options.

Source Input File Errors

DPTCFG produces only two severity levels: warning and error. Warnings
are caused either by redundant option specifications for a group or
device, or by conflicting device and/or group numbering in the source
statements. Group and device numbering is to be considered obsolete
henceforth for the reasons given under Compatibility with Previous
Revs, below. Other than producing warning messages, DPTCFG ignores
numbering conflicts and produces the output specified.

Errors are caused by conflicting or missing information in the source
statements which cannot be supplied or resolved by DPTCFG. No output
files are produced (with the exception of the ERROR file — if
requested).

Warning Messages

Here are the warning messages in alphabetical order. When a word in a
message is entirely capitalized, as "GROUP", it refers specifically to
a keyword, or its arguments. When only the first letter is
capitalized, as "Group", a more general meaning is intended.

DPTCFG maintains its own internal count of devices and groups. The
device and group numbers to which most warning messages refer are
obsolete. When the user specifies a group or device number, or the
numbers of the devices within a group incorrectly, DPTCFG flags the
occurrence with a warning message, o DEVICE count of previous group
incorrect.

The number of devices inferred from the DEVICE ran, nn specifier of the
DEFINE GROUP statement differed from the actual number of device
definitions for this group.

• Device number out of sequence/range.

In the DEFINE DEVICE nn statement, the device number nn is not that
expected.

• First device number out of sequence.

REV. 0 8 - 2 6

MRU5 DPTX

I n t h e DEVICE mm, nn s p e c i f i e r o f t h e DEFINE GROUP s t a t e m e n t , t h e
number of the f irst device (nn) i s either less or greater than the next
number in sequence.

• Group number out of sequence.

The group number given in the DEFINE GROUP statement i s out of
sequence.

• Last device in Group out of sequence.

In the DEVICE nn, nni specifier in the DEFINE GROUP statement, nm i s
less than the current count of devices already defined.

• More devices than defined in GROUP.

In the DEFINE GROUP statement, the DEVICE nn,inn specifier mm did not
match DPTCFG's internal count of the devices specified when tKe end of
that group definition was reached.

• Redundant <option> specification.

The user has specified some option twice (e.g.: given two addresses
for a group). The second and al l subsequent re-specifications are
ignored, option may be one of the following:

For groups:

ADDRESS
DEVICE (obsolete)
LINE
PROTOCOL

For devices:

ADDRESS
ENABLE: COMMAND | BLOCK I WRITE I READ
NAME
PRINTER PLATEN
PRINTER VFC
USER

If a warning message is generated that indicates trouble with the
following device keywords, INPUTQ, MAXMSG, or OUTPUTQ contact your
Prime System Analyst.

27 July 1981

SECTION 8 MRU5

Error Messages

Error messages come from two sources, those resulting from conflicts in
the syntax of the source statements and those resulting from conflicts
in the information given, or from insufficient information. DPTCFG's
error messages are as follows:

• ADDRESS missing in previous Device definition.

The user did not specify an address for the device.

• ADDRESS missing in previous Group definition.

As above, but for a group.

• Address already used in Group.

Two devices in the same group have the same address. Note that this
may result from a bad DEFINE GROUP statement.

• Address already used on line.

Two groups, defined to be on the same line, have the same address.

• Duplicate USER id.

Two DEFINE DEVICE statements specified the same user number for a
command terminal (USER nn option).

• Duplicate name in configuration.

A previous DEFINE DEVICE statement provided the identical (ignoring
case) device name as the current DEFINE DEVICE statement. Device names
must be unique.

• ENABLE COMMAND illegal on printer.

The current DEFINE DEVICE statement specified that the device is a
printer and that it is a user (PRIMDS) terminal. These two options are
mutually exclusive.

REV. 0 8 - 2 8

MRU5 DPTX

• ENABLE GENERAL_POLL i l l e g a l under EM3270 protocol ,
or

• GROUP ENABLE GENERAL_POLL i l l e g a l f o r non S P 3 2 7 0 .

•The ENABLE GENERAL_PQLL option is legal only for SP3270 groups.
(EM3270 groups must always accept general polls.)

• Heterogeneous protocol on line.

Two DEFINE GROUP statements conflict in their definition of the line
protocol. SP3270 and EM3270 cannot exist simultaneously on the same
line.

• LINE missing in previous Group definition.

In the previous DEFINE GROUP statement, the mandatory LINE n clause was
omitted.

• Missing: [<keyword>|<object value>]

The file is incomplete. A keyword option (for example the user number
in the USER clause) , or possibly a DEFINE DEVICE statement for a group
is missing.

• NAME missing in previous Device definition.

The mandatory NAME clause was missing from the previous DEFINE DEVICE
statement.

• Non 3271 address.

The value specified in the ADDRESS clause of a DEFINE DEVICE or
DEFINE GROUP statement is not a legal 3271 address. (This address must
be expressed in hexadecimal.) The "IBM 3270 Information Display System
Component Description" manual (GA27-2749) provides a list of valid
control unit and device addresses.

• Printer platen length too large.

The platen length specified must not exceed 255 characters.

• PROTOCOL missing in previous Group definition.

The user did not include the mandatory PROTOCOL clause in the
DEFINE GROUP statement.

8 - 29 July 1981

SECTION 8 MRU5

• Unexpected source_literal.
Expecting: [keyword[object identifier

• ... keyword 1 object identifier]

This indicates that the user either emitted some keyword or object, or
did not correctly specify the object. Specifying two numbers where one
is required, or specifying a group's protocol as other than SP3270 or
EM3270 are two examples.

• USER and ENABLE COMMAND illegal on printer.

The USER and PRINTER clauses were specified in the same DEFINE DEVICE
statement. The grammar defines these two to be mutually exclusive. A
printer is not a user terminal.

• USER illegal on printer.

The same as above. (The difference being the order in which the two
clauses were specified.)

• USER missing in previous Device definition.

The COMMAND option in the ENABLE clause of a DEFINE DEVICE statement
was specified, but the corresponding USER clause was missing.

Binary Input File Errors

When the REVERSE option is specified, the input file is expected to be
a binary file produced by a previous invocation of DPTCFG. There is
only one error message associated this case, "Bad Config file format."
which indicates that the binary input file that the user specified
contains inconsistent information (according to the structure
established for DPTCFG). No further information is given, as it is
assumed that the user should be editing only source files, and
therefore the file in question cannot be a compatible DPTCFG binary
file.

COMPATIBILITY WITH PREVIOUS REVS

Previous Revisions of DPTCFG differed somewhat from the current
product. In the older version, the default output filename was DPTCON.
This was changed to conform to the recently established filenaming
standard, and to make the implementation of the reverse compilation
easier. The default output filename is now determined from the input
filename (not the treename, but merely the filename).

The format of the source file statements has changed somewhat, although

REV. 0 8 - 3 0

MRU5 DPTX

DPTCFG will still correctly process files created for the old compiler.
The old compiler required keywords (as defined in the section on Source
Input File Grammar) to be prefaced by a hyphen ("-"). This is no
longer required, and the presence of such on keywords is ignored.

The device and group numbers have been eliminated. These too are
recognized by the current compiler and although they are checked for
syntax and correct values, they are largely ignored.

In removing the requirement in DPTCFG for ordering the groups by
protocol in the input source file, it was necessary to put the ordering
process in the compiler itself, as the binary output file (currently)
must have this ordering. The group numbers and device numbers are
therefore somewhat irrelevant, and are not preserved.

This does mean that the device number returned in a BD$ATT call (see
the Block Device Interface section of this document) may not have any
discernible relationship to the device number specified in the
configuration. (Although the source and display files produced by
DPTCFG will have this ordering.) As the original design of the
interface intended that users reference a particular device only by its
name and some label defined fcy the interface itself, this is not seen
to be a significant hindrance.

Also as a result of removing the ordering requirement from the source
file (as described above), the DEVICE keyword of the DEFIME GROUP
statement became superfluous. Again, it will still be recognized by
DPTCFG, but it is no longer a required entry in a group description.

Violations of the old DPTCFG grammar that relate to group and device
numbers result in warnings, but no fatal errors.

Error and warning message reporting has changed significantly, mostly
as a result of the separation of the reporting function from the
parsing and syntax checking. The new format should provide equivalent
functionality.

Old DPTCFG Source Files

It is suggested that users of the old DPTCFG remove the device and
group numbering from their configuration source files and re-compile
them. This will save considerable effort should support for device and
group numbering be discontinued at some future date.

DPTX STARTUP

Process Priorities Automatically Set

The information here affects page 4-9 of The Distributed Processing
Terminal Executive Guide, IDR4035.

- 31 July 1981

SECTION 8 MRU5

At Rev 1 8 . 2 , BSCMAN (s t a r t e d u p by PH SYSTEM>PH_BSC) a u t a n a t i c a l l y s e t s
i t s p r i o r i t y t o 3 . EM3270 and TM3270 (s t a r t e d u p by PH SYSTEM>PH_EMn
and PH SYSTEM>PH_TM) automatically se t the i r p r i o r i t i e s t o 2 . The
system operator need not change the p r i o r i t i e s of these DPTX processes.

Automatic Line Assignment

The information below supplements page 4-9.

Previously t o Rev 18.2 , the command f i l e SYSTEM>PH_BSC contained
statements t o assign the synchronous l ines used by DPTX a t a par t i cu la r
i n s t a l l a t i o n . As shipped, PH_BSC had statements t o assign synchronous
l i ne s 00 through 03 to the BSCMAN process.

At Rev 18.2 DPTX, the assignment of synchronous l ines i s done
automatically, based upon the DPTX configuration establ ished for each
of the DPTX processes. Thus, if PH_EM4 i s brought up, BSCMAN wi l l
dynamically assign synchronous l ine 4 .

WARM STARTING DPTX

As of Rev 18.2 , DPTX automatically recovers from a FRIMOS warm s t a r t .
When a warm s t a r t occurs, the MDLC control ler i s r e s e t by the Master
Clear operation, and BSCMAN disconnects a l l DPTX processes associated
with i t . Each of these various DPTX processes w i l l then automatically
reconnect with BSCMAN. During t h i s time, which may be as much as a few
minutes, host communcation (for DSC and TCF) and control uni t
communication (TSF and TCF) i s temporarily interrupted. Both the IBM
host and the control uni t should t o l e r a t e such an in ter rupt ion .
However, t ransact ions which were incomplete are the applicat ion
programs1 responsibl i ty to recover. The output log of each DPTX
process w i l l indicate when a warm s t a r t has occurred.

DPTX a t Rev 17.8 has a p a r t i a l warm s t a r t r e s t a r t capabi l i ty in tha t
the system need not be cold s ta r ted t o r e s t a r t BSCMAN. For Rev 17.8 ,
after a warm s t a r t has occurred, a DPTX -OFF, then DPTX -ON should be
done.

MULTILINE TRAFFIC MANAGER

This section describes the parameters which are supplied t o the
DPTX-TSF Traff ic Manager a t i n i t i a l i z a t i o n and some subt le in te rac t ions
between them which may affect system performance in unsuspected ways.
TM3270 i s used only in the DPTX-TSF and DPTX-TCF products, not
DPTX-DSC. These notes r e su l t from laboratory experience, and w i l l
undoubtedly be amended as t ha t experience increases. These comments
are specif ic t o Rev 18.2 (and la te r) DPTX.

REV. 0 8 - 3 2

MRU5 DPTX

Introduction

Several parameters are provided at initialization time to control
polling and recovery rates for configured devices and control units.

These parameters are usually provided in the command file used to
startup the Traffic Manager phantom (sometimes referred to as TM or the
STM process). Should TM be started from a user terminal (a practice
which is not encouraged, as this rarely provides any useful
information, and then only in the debugging process), the user is
prompted for this information.

The information required is:

• Line recovery delay. Sometimes, due to excessive line flutter, TM
"shuts" down a line — the line is deconf igured, and both the
receiver and transmitter are turned off at the hardware level.
Periodically, TM will attempt to recover the line by reconfiguring
it. This delay time specifies the period between the time the line
is deconfigured and the time recovery is initiated.

• Control Unit recovery delay. When a protocol violation by a
control unit occurs, TM ceases to poll that unit for this period of
time. The actual delay time between a protocol violation and
re-activation of traffic to and from a CU is of course dependent on
whether the line is active or in recovery (in which case the line
recovery delay — above — has an effect).

• Device recovery delay. When a device status indicates that it is
nonoperational due to some hardware failure, TM ceases to direct
traffic (specific polls and selects) to that device. Ttiis also
occurs when a time-out occurs on a specific poll or device select.
The delay specified is the maximum period between the time TM
"marks the .device down" and the time recovery (resumption of
specific polling and device selection) occurs. Ttie actual time
will vary, depending on the line and CU recovery delays (if
relevant) and whether a device status indicating that the device is
operational is received during a general poll to the corresponding
CU.

• Specific polling period for devices attached to a CU for which
general polling is not enabled. The period specified is the
minimum period between specific polls to a particular device.

• General polling interval. The period specified is the maximum
period between general polls to a particular CU for which general
polling has been enabled.

• Specific polling interval for devices attached to a CU for which
general polling has been enabled. For such control units, it is
occasionally useful to determine the status of a specific device,
particularly when there has been no recent traffic to it.
Applicable instances include printers which are in the midst of
printing; should there be some mechanical failure, the user

- 33 July 1981

SECTION 8 MRU5

process could not otherwise be notified of it. TM therefore
performs periodic specific polling of each device on such a CU.

The recovery delays (in seconds) are specified first (all on one
configuration line), followed by the polling intervals (in tenths of
seconds, on the following configuration line).

Suggested Values

Users will have to derive their own optinal parameters through trial
and observation. This is because DPTX configurations and user
requirements vary. The following observations should help users to
determine their own optimal values.

• Recovery delays should be significantly larger than the minimum
polling interval (an order of magnitude should be sufficient)..

• The relative ordering of recovery delays should be as follows:

The line recovery delay should be the shortest.

The group recovery delay should be a few times longer than the
line recovery delay.

The device recovery delay should exceed the group recovery
delay, although it need not be any large multiple (1.5 to 2.0
should be adequate).

• Polling intervals will have a significant effect on response time
for simple tasks. Caution is advised when decreasing these
parameters, as extremely small polling intervals will result in
correspondingly higher line and PRIME CPU overhead.

• Polling intervals should adhere to the following ordering:

The general polling interval should be the smallest (on the
close order of 0.3 to 1.5 seconds).

The specific polling interval for use when general polling is
enabled should be at least an order of magnitude larger than
the general polling interval. Specific polling under these
circumstances only serves to determine when devices, such as
printers, which have been busy become available. Specific
polling in this circumstance is important, but it need not be
frequent.

The specific polling interval for use when general polling is
inhibited should be approximately the same as the general
polling interval, possibly somewhat smaller. When specific
polling is used, the terminal system response time is
inevitably increased, which implies a correspondingly shorter
polling interval, however greatly reduced polling intervals

REV. 0 8 - 3 4

MRU5 DPTX

result in greatly increased overhead. As a "rule of thumb",
one might take the required response time and divide it by the
total number of specific-polled terminals on a line, to get
some feel for the minimum specific polling interval. This rule
usually results in intervals which are highly skewed toward
high-overhead. (It is probably better to enable general
polling wherever possible. The only disadvantage is the loss
of the TEST REQUEST key at the affected terminals.)

An Example

The environment is exclusively general-polling (that is, all SP3270
control units in the configuration have general polling enabled) and a
relatively large number of devices (printers and terminals) are spread
over a small number of control units. Previous experience with the
configuration (both physical and logical) has indicated a high mean
time between failure (MIBF) for everything except the printers.

Line, control unit and device recovery times (seconds):

1, 2, 12

The determining factor here is that the printers break down (jam)
fairly frequently. The 12 seconds chosen as the device recovery time
should provide for a fairly timely re-activation when the local
operator has corrected the problem. The line recovery time was chosen
mostly to insure that recovery attempts occurred in a period fairly
close to the time specified.

Specific polling (without general polling), general polling, and
specific polling (with general polling) intervals (tenths of seconds):

1800, 5, 100

Once again, the low MIBF for printers was the determining factor. As
all control units have been configured for general polling, the
specific polling rate for non-general-polled control units is
irrelevant. The general polling interval is set fairly low, to yield a
short response time. The specific polling interval for devices on
control units which have general polling enabled is set to ten seconds
to insure a timely determination of the status of a "down" or recently
reactivated device (printer).

Another Example

The environment is the same as the same as the above, except that the
modems on the lines have an extremely low MIBF and the total Prime
system is usually moderately to heavily loaded.

Line, control unit and device recovery times (seconds):

- 35 July 1981

SECTION 8 MRU5

20, 60, 60

As might be ejected, the unreliability of the lines is the dominant
factor. To avoid excessive traffic on the line and excessive CPU
overhead, the line recovery delay is set to a relatively large value.
The CU time is also fairly large, partially as a result of the large
line recovery time and partially because some modem failures appear (to
DPTX) as CU failures (time-outs for example). The device recovery time
is set to track the CU recovery period.

Specific polling (without general polling), general polling and
specific polling (with general polling) intervals (tenths of seconds):

1800, 20, 100

The general polling interval was increased here to decrease the CPU
overhead somewhat, at some sacrifice in response time.

Observed Interactions

• When a control unit or device repeatedly times out, the specific
polling rate becomes strongly affected by the device and control
unit recovery periods. If these recovery delays are significantly
shorter than the specific polling period, the polling period may
well decrease due to the recovery algorithm. Conversely, if the
recovery delays are significantly longer, polling to the particular
CU/device will not resume for some time, and the perceived polling
rate will significantly decrease.

• Extremely low polling periods (0 for example) may result in a
preponderance of polling on the line as compared to the
transmission of output (user process generated text).

REV. 0 8 - 3 6

	Front Cover
	i
	ii
	iii
	iv
	Section 1
	Introduction
	1-1
	Section 2
	System Administrator
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	Section 3
	Languages
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	Section 4
	Utilities
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	Section 5
	Data Management Systems
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	Section 6
	FORMS
	6-1
	Section 7
	PRIMENET
	7-1
	7-2
	7-3
	Section 8
	DPTX
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	Back Cover

